Hi all,
I am wondering if there is a way to convert logit regression coefficients into percentages. Can you help? Thanks!
I am wondering if there is a way to convert logit regression coefficients into percentages. Can you help? Thanks!
margins, dydx(xvar) at(........)
margins, dydx(xvar)
margins, dydx(xvar) atmeans
. sysuse auto (1978 Automobile Data) . binreg foreign mpg headroom, rr Iteration 1: deviance = 271.0127 Iteration 2: deviance = 81.67472 Iteration 3: deviance = 78.09047 Iteration 4: deviance = 77.74763 Iteration 5: deviance = 77.74443 Iteration 6: deviance = 77.74442 Iteration 7: deviance = 77.74442 Generalized linear models Number of obs = 74 Optimization : MQL Fisher scoring Residual df = 71 (IRLS EIM) Scale parameter = 1 Deviance = 77.7444237 (1/df) Deviance = 1.094992 Pearson = 68.79482381 (1/df) Pearson = .9689412 Variance function: V(u) = u*(1-u) [Bernoulli] Link function : g(u) = ln(u) [Log] BIC = -227.8442 ------------------------------------------------------------------------------ | EIM foreign | Risk Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- mpg | 1.078314 .0117803 6.90 0.000 1.055471 1.101652 headroom | .793299 .1541072 -1.19 0.233 .5421025 1.160893 _cons | .1005949 .0583758 -3.96 0.000 .0322566 .3137133 ------------------------------------------------------------------------------ Note: _cons estimates baseline risk. . poisson foreign mpg headroom, vce(robust) irr Iteration 0: log pseudolikelihood = -44.35289 Iteration 1: log pseudolikelihood = -44.352045 Iteration 2: log pseudolikelihood = -44.352045 Poisson regression Number of obs = 74 Wald chi2(2) = 21.54 Prob > chi2 = 0.0000 Log pseudolikelihood = -44.352045 Pseudo R2 = 0.0890 ------------------------------------------------------------------------------ | Robust foreign | IRR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- mpg | 1.073029 .0230139 3.29 0.001 1.028858 1.119097 headroom | .6735429 .1282538 -2.08 0.038 .4637482 .9782464 _cons | .1774262 .1608975 -1.91 0.057 .0299994 1.049356 ------------------------------------------------------------------------------ Note: _cons estimates baseline incidence rate.
Comment