Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Regression analysis seems very strange

    Dear all,


    I'm investigating the relationship between patenting on the return of investment and look whether there is a difference between normal and acquired firms. I use ROI as a dependent variable and patens per year (pat_year -> number of granted patents granted per year per firm) and ma active (maactive -> is 0 in the year before acquisition, or in all years if never acquisition and 1 in the year from first acquisition and the years after that measured per firm and year) as independent variables. My control variables are firm size (measured as number of employees (emp) and total assets (ta)) and industry (measured as SIC code (SIC)). I want to use the total of acquisitions made by a firm (matotal) as a variable for a robustness check. I just ran a regression analysis just to quickly test if the results look okay or strange. And in this case, the results look far from correct to me. All variables are far from significant and the R2 is really really low. So my question is, what could be the problem here? Is my data incorrect or did I just ran the analysis in an incorrect way?

    Thanks in advance!

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input long gvkey double fyear float ROI double pat_yr float(maactive totalma) double(emp at) int sic
    1078 1997    .4801397              195.5 0 14 54.487 12061.068 3845
    1078 1998    .4420482              172.5 0 14 56.236 13216.213 3845
    1078 1999    .3803547              152.5 1 14   57.1 14471.044 3845
    1078 2000    .3381337              130.5 1 14 60.571 15283.254 3845
    1078 2001    .2641248                136 1 14 71.426 23296.423 3845
    1078 2002   .26380387              134.5 1 14 71.819 24259.102 3845
    1078 2003   .25203487              128.5 1 14 72.181 26715.342 3845
    1078 2004   .23309574               99.5 1 14   60.6 28767.494 3845
    1078 2005   .25467196               64.5 1 14 59.735 29141.203 3845
    1078 2006   .23073745                178 1 14 66.663 36178.172 3845
    1078 2007    .2025775              153.5 1 14     68 39713.924 3845
    1078 2008    .2472846              170.5 1 14     69 42419.204 3845
    1078 2009   .20207043              212.5 1 14     73 52416.623 3845
    1078 2010    .2296796                480 1 14     90 59462.266 3845
    1078 2011   .24603337                630 1 14     91 60276.893 3845
    1078 2012   .21790276              692.5 1 14     91 67234.944 3845
    1078 2013   .09331705                674 1 14     69     42953 3845
    1078 2014    .1168603              573.5 1 14     77     41275 3845
    1078 2015   .12398426              465.5 1 14     74     41247 3845
    1084 2001    .4526495                  1 0  0   .001      .006 7370
    1084 2002 -.012389752                  0 0  0   .001      .013 7370
    1084 2003   .00586807                  0 0  0   .001      .002 7370
    1084 2004  .006047966                  0 0  0   .001      .002 7370
    1084 2005 .0029711374                  0 0  0   .001      .003 7370
    1084 2006   .01033485                  0 0  0   .001      .002 7370
    1084 2007    .3193658                  0 0  0   .001      .346 7370
    1084 2008   .19756925                  0 0  0   .001      .174 7370
    1084 2009     .186853                  1 0  0   .001      .004 7370
    1084 2010   .18327183                  0 0  0   .001      .402 7370
    1084 2011    .5365622                  0 0  0   .001      .279 7370
    1084 2012    .5060827                  2 0  0   .001      .237 7370
    1084 2013     .992004                  1 0  0   .001      .328 7370
    1084 2014    .1772372                  1 0  0   .001      .028 7370
    1084 2015    .1495527                  1 0  0   .001      .026 7370
    1104 1997   .04386884                  0 0  5   .433    29.857 3420
    1104 1998  -.07722916                  0 0  5   .312    28.896 3420
    1104 1999   .05071249                  0 0  5   .172    20.767 3420
    1104 2000    .1895139                  1 0  5   .134    21.118 3420
    1104 2001   .21390837                  1 0  5   .121    20.173 3420
    1104 2002    .1055936                  0 0  5     .1    17.614 3420
    1104 2003   .19225118                  2 0  5    .09    20.023 3420
    1104 2004    .3971646                  0 1  5   .103    23.009 3420
    1104 2005    .3483861                  1 1  5   .116    28.194 3420
    1104 2006    .2367985                  2 1  5    .12    35.021 3420
    1104 2007   .20317155                  0 1  5   .126    42.222 3420
    1104 2008    .1985969                  0 1  5   .137    45.424 3420
    1104 2009   .08983529                  1 1  5   .134    42.309 3420
    1104 2010   .07665792                  0 1  5   .132    49.581 3420
    1104 2011   .09723662                  5 1  5   .157    55.222 3420
    1104 2012    .0971442                  3 1  5   .171    67.828 3420
    1104 2013   .10150733                  0 1  5    .18    68.079 3420
    1104 2014   .12102242                  6 1  5   .303    79.308 3420
    1104 2015   .11211774                  0 1  5   .342    81.421 3420
    1161 1997  -.03367206              273.5 0  4   12.8  3515.271 3674
    1161 1998  -.04845113                556 0  4   13.8  4252.968 3674
    1161 1999  -.08298296                830 0  4 13.387  4377.698 3674
    1161 2000   .20479487               1053 0  4 14.696  5767.735 3674
    1161 2001  .008975402             1091.5 0  4 14.415  5647.242 3674
    1161 2002  -.20079833 1153.8333740234375 1  4 12.146  5619.181 3674
    1161 2003  -.04891127                908 1  4   14.3  7094.345 3674
    1161 2004   .04147957              812.5 1  4   15.9   7844.21 3674
    1161 2005   .05039897              539.5 1  4   9.86  7287.779 3674
    1161 2006   .04114087                510 1  4   16.5     13147 3674
    1161 2007  -.14615013              339.5 1  4  16.42     11550 3674
    1161 2008   -.2021299                235 1  4   14.7      7675 3674
    1161 2009  -.08584338              246.5 1  4   13.4      9078 3674
    1161 2010   .15370196  230.8333282470703 1  4   11.1      4964 3674
    1161 2011   .15880655                253 1  4 11.093      4954 3674
    1161 2012  .012038835                262 1  4  10.34      4000 3674
    1161 2013   .03343824                287 1  4 10.671      4337 3674
    1161 2014   .06705671  297.8333282470703 1  4  9.687      3767 3674
    1161 2015   -.1969136                246 1  4  9.139      3109 3674
    1209 1997   .13899349               72.5 1 14   16.4    7244.1 2810
    1209 1998    .1646835                 82 1 14   16.7    7489.6 2810
    1209 1999   .14267895                 87 1 14   17.4    8235.5 2810
    1209 2000   .15012787                105 1 14   17.5    8270.5 2810
    1209 2001   .15262887                 87 1 14   17.8    8084.1 2810
    1209 2002    .1340005                 77 1 14   17.2      8495 2810
    1209 2003    .1173117              105.5 1 14   18.5    9431.9 2810
    1209 2004   .12459674                 77 1 14   19.9   10040.4 2810
    1209 2005   .14033335               61.5 1 14   20.2   10408.8 2810
    1209 2006    .1372897               71.5 1 14   20.7   11180.7 2810
    1209 2007    .1547853               73.5 1 14   22.1   12659.5 2810
    1209 2008    .1716711                 74 1 14   21.1   12571.3 2810
    1209 2009   .13350144                 62 1 14   18.9   13029.1 2810
    1209 2010    .1542095                 62 1 14   18.3   13505.9 2810
    1209 2011    .1650078               58.5 1 14   18.9   14290.7 2810
    1209 2012    .1284138                 87 1 14   21.3   16941.8 2810
    1209 2013   .11941256                 92 1 14   21.6   17850.1 2810
    1209 2014    .1269443                 81 1 14   21.2   17779.1 2810
    1209 2015    .1650721                 63 1 14   19.7   17438.1 2810
    1228 1997    -.110242                  2 0  3   .066    16.959 4950
    1228 1998   .08948132                  1 0  3   .063     9.658 4950
    1228 1999  .016587678                  0 0  3   .055     8.156 4950
    1228 2000  -.19897448                  0 0  3    .05    11.434 4950
    1228 2001   -.4556905                  0 1  3   .054     9.781 4950
    1228 2002   -.2894567                  0 1  3   .036     9.862 4950
    1228 2003    -.323962                  0 1  3   .037    10.319 4950
    1228 2004   -.2985118                  0 1  3   .044    11.586 4950
    1228 2005   -.4198913                  0 1  3   .042    10.544 4950
    end
    Click image for larger version

Name:	Schermafbeelding 2021-05-18 om 19.28.53.png
Views:	2
Size:	761.8 KB
ID:	1610444


    Click image for larger version

Name:	Schermafbeelding 2021-05-18 om 19.29.34.png
Views:	1
Size:	490.5 KB
ID:	1610443





    Attached Files

  • #2
    Thomas, before anything else please read FAQ about how to effectively post a question. That said your emp and at variables cannot be right. minimum of 0.001 employees? min of 0.002 at to maximum of 67 thousands of it? Obviously your data has some issues. Plus. your model specification treats sic as a numeric variable. I am pretty sure you need to use factor notation to use industry as a control variable. That is where I stopped looking because there are things you need to fix for me to say anything further...

    . summarize emp

    Variable | Obs Mean Std. Dev. Min Max
    -------------+---------------------------------------------------------
    emp | 100 19.46417 26.24642 .001 91

    . summarize at

    Variable | Obs Mean Std. Dev. Min Max
    -------------+---------------------------------------------------------
    at | 100 10141.98 14955.84 .002 67234.94


    Comment


    • #3
      Thank you for responding Oscar, and sorry for not posting correctly. The variable emp was measured in thousands, so is used code: gen totalemp = emp*1000 (to create new total employee variable in absolute numbers). The variable at was measured in millions, so I used code gen totalassets = at*1000000 (to create new total assets variable in absolute numbers). To reduce firms with same industry (SIC) code, I used code gen sic2d = floor(sic/100). Then I ran the regression analysis using code:

      xtreg returnoninvestment pat_yr maactive totalemp totalasset i.sic2d

      I used de i. so that STATA uses sic2d as a categorical variable. I want to control for sic2d (industry) totalemp and total asset (which are both now in absolute numbers) and maybe later on for years. I thought the i. in the regression formula was the right way to do that, or do I have to create dummy variables for industry (and maybe years later on)?

      thanks in advance

      Code:
      * Example generated by -dataex-. To install: ssc install dataex
      clear
      input double fyear float returnoninvestment double pat_yr float(maactive totalemp totalassets sic2d)
      2011    6.62207     1 1  42000   2.504e+09  1
      2012   8.460791     1 1  44000  2.5334e+09  1
      2010   5.947549     1 1  42000  2.5177e+09  1
      2015   7.905769     0 1  47000  2.5961e+09  1
      2013   5.750575     0 1  46000  2.5892e+09  1
      2014   9.232193     0 1  45000  2.6753e+09  1
      2014  4.5476975    10 1   3330  3.6011e+10 13
      2015  -8.611002    44 1  15900  9.7484e+10 13
      2003  10.689542 206.5 1 101000  1.5463e+10 13
      1999   4.863281   169 1  55000 15081192448 13
      2014   5.595635     3 1    879   617257024 13
      1998    6.17271    13 0  24344  1.4544e+10 13
      2006   8.806937     7 1   1015   655136000 13
      2009   8.239728    45 1  30000 1.52588e+11 13
      2000  10.725432     0 0   3606  1259491968 13
      2003 -3.8821976     1 0   6523  4318978048 13
      1999   7.917287     3 0   1732   190575008 13
      2015 -10.201712     3 1   2611  3.2311e+10 13
      2013  12.460523     6 1   1072   864670976 13
      2010   21.10337   291 1  58000  1.8297e+10 13
      2011   26.26414   246 1  68000  2.3677e+10 13
      2013   11.22636     3 0   5500  8391434240 13
      2009  14.747487     1 1  10100  4.4229e+10 13
      2010   14.54428  48.5 1  29700 1.56314e+11 13
      2011  13.210893     3 1    937   674057984 13
      2004   4.004003     0 1   4251  1406844032 13
      2003  11.209698     1 1   4800   662856000 13
      1998    8.56471     1 0   1425   311008000 13
      2007   31.22284     1 1   9700  3.6519e+10 13
      2015  11.055277   536 1  95000  6.8005e+10 13
      2005  13.246954     2 1   5500   989568000 13
      2009  -6.838685     0 1   1980   649043008 13
      2000   7.195266   226 1  60000 17172730880 13
      2002  -20.50087     6 1    598   248444992 13
      2001  14.096665     4 1   3500   579611008 13
      2004  10.218787   230 1  97000  1.5796e+10 13
      2006   33.72608 298.5 1 104000   1.682e+10 13
      2008   31.39067     0 1   8176  7370458112 13
      2014 -1.8685552     3 1  11700  5.6259e+10 13
      2012   44.57113     0 1   3600  1367163008 13
      2012  16.949535 539.5 1 118000  6.1547e+10 13
      2015 -8.7120285     0 1   3114 10929901568 13
      2009    21.7296     2 1   7900  1880286976 13
      2004   6.686217     0 0   6982  4195610880 13
      2008    24.7719     9 1  30360  4.2686e+10 13
      1997  16.879433     1 0   2600   316543008 13
      2006   27.39014     0 1   7253  5663331840 13
      2008   38.72713     1 1  10400  4.1537e+10 13
      2002   9.571697   223 1  78500 19435194368 13
      2013  26.837883     3 1  12200  3.1285e+09 13
      2012  15.846274     4 1  12300   6.421e+10 13
      2014  31.886387     0 1   4500  1759357952 13
      2006  32.701637   227 1  70000 22832138240 13
      1998  15.215705  85.5 1  64000 16077929472 13
      1998   21.11728   136 1 107800 1.10659e+10 13
      2011   50.30707     0 1   3400  1338210944 13
      2009  31.414486     0 1   8012  7725401088 13
      1999   8.551674   180 1 103000  1.0728e+10 13
      1999  13.400212    72 0  15900  1.5201e+10 13
      2000   6.420737 204.5 1  93000  1.0103e+10 13
      2004   7.256504     1 1   1528   508988000 13
      2007   3.723837     0 1   2895  1295536000 13
      1999   7.088449     1 0   3440  1109698944 13
      2014  26.097557     8 1  12400  3511700992 13
      2011  24.319973     1 1  11300  6.0044e+10 13
      2008   32.83079   262 1  87000 31990724608 13
      2010  11.446418     0 1   8630 12070609920 13
      2010  12.261573   576 1 108000  5.1767e+10 13
      2000   22.98986    24 1   8791  1.9414e+10 13
      2006   21.84428     2 1   2536  1086189952 13
      2013   19.30848   409 1  77000  2.9223e+10 13
      2003  10.518517     0 1   1529   226750000 13
      2004  15.558134   229 1  52500 16000777216 13
      2006  26.321285     1 1   5705  2134712064 13
      2014   3.540117     0 1   3834 11759529984 13
      2002   9.055222     7 1  28166  1.7812e+10 13
      2004  24.950006     0 1   1596   262942000 13
      2012   22.44598   4.5 1  10900  2768118016 13
      2011  14.070517     0 1   9157 1.25257e+10 13
      2009  16.509022 228.5 1  51000  1.6538e+10 13
      2003  11.354794   224 1  77000 20041326592 13
      2010  -7.179087     1 1   2932  1299628032 13
      2003  3.4260876     0 1   3937  1415835008 13
      2012   21.63513   299 1  73000   2.741e+10 13
      1997   21.70649    71 1  70750   5.603e+09 13
      2014  20.378656 474.5 1  80000   3.224e+10 13
      2010   35.61142     0 1   2500   887870976 13
      2004  -.3866473     9 1    743   479116000 13
      1997  21.230953  87.5 0  63500 12096731136 13
      2015   7.686701 516.5 1  65000  3.6942e+10 13
      2010  22.636786     5 1   8200  2030505984 13
      2013   20.72932     0 1  10333  6264826880 13
      2013  16.137623     3 1  12900  6.9443e+10 13
      2000   5.740849     2 0   3000   512684000 13
      2012   14.34473     2 1   1071   820582976 13
      1998   3.654596    74 0  17300  1.4216e+10 13
      2011  21.456177     2 0   5300  6964156928 13
      2005   5.762093    10 1    804   537860992 13
      2002   7.382596     0 1   1391   308816992 13
      1999   9.978066     7 0   3200   450976000 13
      end

      Comment


      • #4
        All the fixes you made sounds good. Now we know your data is correct. i.sic2d should be sufficient to handle industry effects. No need to create dummy variables manually for industry. I tried to run the model with the updated data but failed to find your panel variable. Are you not using panel variable in your model? Because without it xtreg would not run...

        Comment


        • #5
          Thanks for responding. Yes I use panel data. I think this is what you mean, because gvkey is used to identify firms:

          Code:
          * Example generated by -dataex-. To install: ssc install dataex
          clear
          input long gvkey double fyear float returnoninvestment double pat_yr float(maactive totalemp totalassets) str2 sic2d
           30443 2011    6.62207     1 1  42000   2.504e+09 "1" 
           30443 2012   8.460791     1 1  44000  2.5334e+09 "1" 
           30443 2010   5.947549     1 1  42000  2.5177e+09 "1" 
           30443 2015   7.905769     0 1  47000  2.5961e+09 "1" 
           30443 2013   5.750575     0 1  46000  2.5892e+09 "1" 
           30443 2014   9.232193     0 1  45000  2.6753e+09 "1" 
            7017 2014  4.5476975    10 1   3330  3.6011e+10 "13"
            8549 2015  -8.611002    44 1  15900  9.7484e+10 "13"
            5439 2003  10.689542 206.5 1 101000  1.5463e+10 "13"
            9465 1999   4.863281   169 1  55000 15081192448 "13"
           23810 2014   5.595635     3 1    879   617257024 "13"
            7017 1998    6.17271    13 0  24344  1.4544e+10 "13"
           23810 2006   8.806937     7 1   1015   655136000 "13"
            8549 2009   8.239728    45 1  30000 1.52588e+11 "13"
            5581 2000  10.725432     0 0   3606  1259491968 "13"
          120093 2003 -3.8821976     1 0   6523  4318978048 "13"
            8901 1999   7.917287     3 0   1732   190575008 "13"
            7017 2015 -10.201712     3 1   2611  3.2311e+10 "13"
           23810 2013  12.460523     6 1   1072   864670976 "13"
            5439 2010   21.10337   291 1  58000  1.8297e+10 "13"
            5439 2011   26.26414   246 1  68000  2.3677e+10 "13"
           61409 2013   11.22636     3 0   5500  8391434240 "13"
            8068 2009  14.747487     1 1  10100  4.4229e+10 "13"
            8549 2010   14.54428  48.5 1  29700 1.56314e+11 "13"
           23810 2011  13.210893     3 1    937   674057984 "13"
            5581 2004   4.004003     0 1   4251  1406844032 "13"
            8079 2003  11.209698     1 1   4800   662856000 "13"
           21237 1998    8.56471     1 0   1425   311008000 "13"
            8068 2007   31.22284     1 1   9700  3.6519e+10 "13"
            9465 2015  11.055277   536 1  95000  6.8005e+10 "13"
            8079 2005  13.246954     2 1   5500   989568000 "13"
            8901 2009  -6.838685     0 1   1980   649043008 "13"
            9465 2000   7.195266   226 1  60000 17172730880 "13"
           23810 2002  -20.50087     6 1    598   248444992 "13"
            8079 2001  14.096665     4 1   3500   579611008 "13"
            5439 2004  10.218787   230 1  97000  1.5796e+10 "13"
            5439 2006   33.72608 298.5 1 104000   1.682e+10 "13"
          120093 2008   31.39067     0 1   8176  7370458112 "13"
            8068 2014 -1.8685552     3 1  11700  5.6259e+10 "13"
            8901 2012   44.57113     0 1   3600  1367163008 "13"
            9465 2012  16.949535 539.5 1 118000  6.1547e+10 "13"
          120093 2015 -8.7120285     0 1   3114 10929901568 "13"
            8079 2009    21.7296     2 1   7900  1880286976 "13"
          120093 2004   6.686217     0 0   6982  4195610880 "13"
            7017 2008    24.7719     9 1  30360  4.2686e+10 "13"
            8079 1997  16.879433     1 0   2600   316543008 "13"
          120093 2006   27.39014     0 1   7253  5663331840 "13"
            8068 2008   38.72713     1 1  10400  4.1537e+10 "13"
            9465 2002   9.571697   223 1  78500 19435194368 "13"
            8079 2013  26.837883     3 1  12200  3.1285e+09 "13"
            8068 2012  15.846274     4 1  12300   6.421e+10 "13"
            8901 2014  31.886387     0 1   4500  1759357952 "13"
            9465 2006  32.701637   227 1  70000 22832138240 "13"
            9465 1998  15.215705  85.5 1  64000 16077929472 "13"
            5439 1998   21.11728   136 1 107800 1.10659e+10 "13"
            8901 2011   50.30707     0 1   3400  1338210944 "13"
          120093 2009  31.414486     0 1   8012  7725401088 "13"
            5439 1999   8.551674   180 1 103000  1.0728e+10 "13"
            8549 1999  13.400212    72 0  15900  1.5201e+10 "13"
            5439 2000   6.420737 204.5 1  93000  1.0103e+10 "13"
           21237 2004   7.256504     1 1   1528   508988000 "13"
           21237 2007   3.723837     0 1   2895  1295536000 "13"
            5581 1999   7.088449     1 0   3440  1109698944 "13"
            8079 2014  26.097557     8 1  12400  3511700992 "13"
            8068 2011  24.319973     1 1  11300  6.0044e+10 "13"
            9465 2008   32.83079   262 1  87000 31990724608 "13"
          120093 2010  11.446418     0 1   8630 12070609920 "13"
            9465 2010  12.261573   576 1 108000  5.1767e+10 "13"
            8068 2000   22.98986    24 1   8791  1.9414e+10 "13"
           21237 2006   21.84428     2 1   2536  1086189952 "13"
            5439 2013   19.30848   409 1  77000  2.9223e+10 "13"
            8901 2003  10.518517     0 1   1529   226750000 "13"
            9465 2004  15.558134   229 1  52500 16000777216 "13"
            5581 2006  26.321285     1 1   5705  2134712064 "13"
          120093 2014   3.540117     0 1   3834 11759529984 "13"
            7017 2002   9.055222     7 1  28166  1.7812e+10 "13"
            8901 2004  24.950006     0 1   1596   262942000 "13"
            8079 2012   22.44598   4.5 1  10900  2768118016 "13"
          120093 2011  14.070517     0 1   9157 1.25257e+10 "13"
            5439 2009  16.509022 228.5 1  51000  1.6538e+10 "13"
            9465 2003  11.354794   224 1  77000 20041326592 "13"
           21237 2010  -7.179087     1 1   2932  1299628032 "13"
            5581 2003  3.4260876     0 1   3937  1415835008 "13"
            5439 2012   21.63513   299 1  73000   2.741e+10 "13"
            5439 1997   21.70649    71 1  70750   5.603e+09 "13"
            5439 2014  20.378656 474.5 1  80000   3.224e+10 "13"
            8901 2010   35.61142     0 1   2500   887870976 "13"
           23810 2004  -.3866473     9 1    743   479116000 "13"
            9465 1997  21.230953  87.5 0  63500 12096731136 "13"
            5439 2015   7.686701 516.5 1  65000  3.6942e+10 "13"
            8079 2010  22.636786     5 1   8200  2030505984 "13"
            5581 2013   20.72932     0 1  10333  6264826880 "13"
            8068 2013  16.137623     3 1  12900  6.9443e+10 "13"
            8079 2000   5.740849     2 0   3000   512684000 "13"
           23810 2012   14.34473     2 1   1071   820582976 "13"
            8549 1998   3.654596    74 0  17300  1.4216e+10 "13"
           61409 2011  21.456177     2 0   5300  6964156928 "13"
           23810 2005   5.762093    10 1    804   537860992 "13"
           21237 2002   7.382596     0 1   1391   308816992 "13"
            8079 1999   9.978066     7 0   3200   450976000 "13"
          end
          Code:
          xtreg returnoninvestment pat_yr maactive totalemp totalasset i.sic2d
          Does this help? thanks in advance

          Comment


          • #6
            And further question, to control for macroeconomic effect, could I use the same i.fyear as I did for i.sic2d?

            Comment


            • #7
              i.fyear would control year-to-year variations which could be due to macroeconomic conditions or due to anything else. You can use i.year but I would not characterize the use of it "to control macroeconomic effects" but rather to control year to year changes.

              Comment


              • #8
                Okay thank you, very clear answer.

                using
                Code:
                 pwcorr returnoninvestment pat_yr maactive totalemp totalassets fyear sic2d, sig
                I find almost everything being significant correlated with each other but if I run:
                Code:
                   
                 xtreg returnoninvestment pat_yr maactive totalemp totalasset i.sic2d
                Everything is far from significant. How is that possible? Did I ran the wrong analysis?

                Comment


                • #9
                  Thomas,
                  Simply put data does not support the relationships you thought would be there. Time to think if there are any possible misspecification that may be present or rethink and evaluate whether ROI should be the dependent variable of interest. It is not unusual to not find a significant relationship despite what we may have originally thought.

                  Comment

                  Working...
                  X