Good day everyone
I was kindly requesting assistance. I correlated yield and DEM variables and I have around 15000 observations. I would like to find less influential variables that affect the low correlation.
I’ve tried different methods that I’ve seen on this forum but I think I am not doing something wrong as I get error messages.
I will appreciate it if someone corrects my code to me.
egenmore corr1= corr(yield, DEM) , by(fid)
Error: command egenmore is unrecognized
I was kindly requesting assistance. I correlated yield and DEM variables and I have around 15000 observations. I would like to find less influential variables that affect the low correlation.
I’ve tried different methods that I’ve seen on this forum but I think I am not doing something wrong as I get error messages.
I will appreciate it if someone corrects my code to me.
egenmore corr1= corr(yield, DEM) , by(fid)
Error: command egenmore is unrecognized
FID | yield | DEM |
0 | 4.22505 | 3.613554 |
1 | 5.7904 | 3.639574 |
2 | 5.98815 | 3.735786 |
3 | 5.877675 | 3.751731 |
4 | 6.65555 | 3.732317 |
5 | 5.9603 | 3.742209 |
6 | 6.2362 | 3.7284 |
7 | 6.5016 | 3.793361 |
8 | 6.66445 | 3.801543 |
9 | 6.268925 | 3.847231 |
10 | 6.56635 | 3.818495 |
11 | 6.302375 | 3.8284 |
12 | 6.3464 | 3.842584 |
13 | 6.882575 | 3.847168 |
14 | 7.026975 | 3.928738 |
15 | 6.927975 | 3.931657 |
16 | 5.99775 | 3.935923 |
17 | 5.9769 | 3.955251 |
18 | 6.085325 | 3.938371 |
19 | 6.1305 | 3.95141 |
20 | 6.4169 | 3.970702 |
21 | 6.39635 | 3.998399 |
22 | 6.08975 | 4.016246 |
23 | 6.349175 | 4.007195 |
24 | 5.91035 | 4.012233 |
25 | 5.677625 | 4.015934 |
26 | 4.93885 | 4.016912 |
27 | 5.1393 | 3.996199 |
28 | 5.041175 | 3.983388 |
29 | 5.416575 | 3.986725 |
30 | 5.409425 | 4.020954 |
31 | 5.21225 | 4.04499 |
32 | 5.399975 | 4.047986 |
33 | 4.668625 | 4.067715 |
34 | 4.919425 | 4.067241 |
35 | 4.54245 | 4.076788 |
36 | 4.36695 | 4.077446 |
37 | 4.40215 | 4.050743 |
38 | 4.654175 | 4.05063 |
39 | 4.968975 | 4.045498 |
40 | 5.2284 | 4.109359 |
41 | 4.456975 | 4.108246 |
42 | 3.74855 | 4.047297 |
43 | 4.336725 | 3.994994 |
44 | 4.17595 | 4.068776 |
45 | 5.24705 | 4.134148 |
46 | 5.2088 | 4.16378 |
47 | 6.084 | 4.1645 |
48 | 5.6427 | 4.120104 |
49 | 5.4703 | 4.098624 |
50 | 5.43955 | 4.058217 |
51 | 5.20975 | 3.977072 |
52 | 4.547875 | 3.980149 |
53 | 4.1893 | 3.904951 |
54 | 4.258975 | 3.833583 |
55 | 4.39275 | 3.840139 |
56 | 4.83865 | 3.811399 |
57 | 4.3447 | 3.758291 |
58 | 3.641175 | 3.681761 |
59 | 3.734675 | 3.631509 |
60 | 3.552325 | 3.609142 |
61 | 3.280925 | 3.507009 |
62 | 3.402725 | 3.416963 |
63 | 4.019625 | 3.326922 |
64 | 4.907875 | 3.28381 |
65 | 4.578975 | 3.235068 |
66 | 4.171525 | 3.168867 |
67 | 4.251475 | 3.144556 |
68 | 4.167225 | 3.066346 |
69 | 3.9188 | 3.059794 |
70 | 3.591975 | 3.016265 |
71 | 1.768 | 2.791127 |
72 | 1.3077 | 2.545597 |
73 | 1.27515 | 2.527058 |
74 | 1.826725 | 2.763952 |
75 | 2.004775 | 2.842975 |
76 | 3.1396 | 2.81416 |
77 | 2.1865 | 2.748117 |
78 | 5.3409 | 2.949697 |
79 | 3.8303 | 2.90294 |
80 | 6.210025 | 3.081014 |
81 | 5.589075 | 3.178157 |
82 | 6.31075 | 3.201829 |
83 | 6.048125 | 3.231142 |
84 | 5.547775 | 3.248579 |
85 | 5.40915 | 3.267068 |
86 | 5.71085 | 3.320058 |
87 | 5.821 | 3.422306 |
88 | 6.095875 | 3.488281 |
89 | 5.88745 | 3.547491 |
90 | 5.743325 | 3.578636 |
91 | 6.237175 | 3.621943 |
92 | 5.8298 | 3.628169 |
93 | 4.498625 | 3.6117 |
94 | 3.859825 | 3.625234 |
95 | 4.5237 | 3.632873 |
96 | 4.1156 | 3.659969 |
97 | 5.899825 | 3.593693 |
98 | 3.507225 | 3.621556 |
99 | 4.2924 | 3.602226 |
100 | 7.3091 | 3.771317 |
Comment