Hello everyone,
I am trying to assess differences in COVID-19 outcomes (such as COVID-19 cases and deaths), among countries, based on their government system (either federal or unitary). To do that I am making use of panel data and I would perform regressions. I show here a portion of my dataset:
The date includes years and months from 720=2020m1 to 735=2021m4 (even though here they are displayed as integers); country_system is equal to 1 if the country has a federal system 0 otherwise; total_cases_per_million and total_deaths_per_million would be my control variables, and the rest of the variables are controls.
Because of colinearity, I cannot use - xtreg, fe -. However, the dummy variable country_system is crucial for this analysis. Therefore, I would like to ask if there is anyone to know how to address this problem in this context and if it would be needed to specify a different model.
Thank you in advance to whoever is willing to take the time to help.
Best regards
Alessio Lombini
I am trying to assess differences in COVID-19 outcomes (such as COVID-19 cases and deaths), among countries, based on their government system (either federal or unitary). To do that I am making use of panel data and I would perform regressions. I show here a portion of my dataset:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str8 country str3 date float(country_system total_cases_per_million total_deaths_per_million aged_70_older gdp_per_capita stringency_index) double new_tests_per_thousand "ARG" "720" 1 . . 7.441 18933.906 3.225484 .009000000427477062 "ARG" "721" 1 . . 7.441 18933.906 11.11 .0010000000474974513 "ARG" "722" 1 23.321 .597 7.441 18933.906 51.70258 .14600000076461583 "ARG" "723" 1 97.974 4.823 7.441 18933.906 98.457 1.3300000000745058 "ARG" "724" 1 372.845 11.926 7.441 18933.906 90.26258 2.875 "ARG" "725" 1 1427.788 28.919 7.441 18933.906 89.13667 5.419000014662743 "ARG" "726" 1 4232.741 78.392 7.441 18933.906 91.51548 9.875000014901161 "ARG" "727" 1 9242.788 191.611 7.441 18933.906 88.25935 14.580000042915344 "ARG" "728" 1 16616.62 374.747 7.441 18933.906 87.96 17.337999939918518 "ARG" "729" 1 25819.314 685.949 7.441 18933.906 83.95871 17.764000058174133 "ARG" "730" 1 31519.16 856.938 7.441 18933.906 79.63167 13.205000013113022 "ARG" "731" 1 35966.06 956.837 7.441 18933.906 79.17 15.27199998497963 "ARG" "732" 1 42642.02 1061.471 7.441 18933.906 79.17 24.611000046133995 "ARG" "733" 1 46627.48 1149.776 7.441 18933.906 78.43929 21.663000136613846 "ARG" "734" 1 51969.92 1235.912 7.441 18933.906 72.699356 22.41499999165535 "ARG" "735" 1 63299.81 1363.933 7.441 18933.906 71.76 16.5939998626709 "AUS" "720" 1 .353 . 10.129 44648.71 11.11 0 "AUS" "721" 1 .98 . 10.129 44648.71 19.44 0 "AUS" "722" 1 178.785 .706 10.129 44648.71 38.20032 0 "AUS" "723" 1 265.335 3.647 10.129 44648.71 71.48067 10.448999986052513 "AUS" "724" 1 282.433 4.039 10.129 44648.71 67.35226 34.937000036239624 "AUS" "725" 1 310.59 4.078 10.129 44648.71 55.01433 39.2709998190403 "AUS" "726" 1 677.65 7.882 10.129 44648.71 69.81935 62.639000415802 "AUS" "727" 1 1012.515 25.765 10.129 44648.71 75.10194 59.37099993228912 "AUS" "728" 1 1062.593 34.824 10.129 44648.71 74.72 30.092000126838684 "AUS" "729" 1 1082.162 35.569 10.129 44648.71 65.66968 22.57699978351593 "AUS" "730" 1 1094.593 35.608 10.129 44648.71 52.76067 27.038000166416168 "AUS" "731" 1 1114.711 35.647 10.129 44648.71 65.993225 23.894999980926514 "AUS" "732" 1 1130.123 35.647 10.129 44648.71 60.67516 30.39299976825714 "AUS" "733" 1 1136.397 35.647 10.129 44648.71 62.46643 25.47699999809265 "AUS" "734" 1 1149.888 35.647 10.129 44648.71 50.91 16.096999943256378 "AUS" "735" 1 1163.927 35.686 10.129 44648.71 47.278 18.580000042915344 "AUT" "720" 1 . . 13.748 45436.69 . 0 "AUT" "721" 1 .999 . 13.748 45436.69 11.11 0 "AUT" "722" 1 1130.307 14.212 13.748 45436.69 52.92613 0 "AUT" "723" 1 1715.669 64.843 13.748 45436.69 78.642 26.59999969601631 "AUT" "724" 1 1857.679 74.169 13.748 45436.69 60.60193 21.332999974489212 "AUT" "725" 1 1972.597 78.278 13.748 45436.69 50.24667 18.233000099658966 "AUT" "726" 1 2346.109 79.721 13.748 45436.69 39.03709 30.833000123500824 "AUT" "727" 1 3046.5 81.387 13.748 45436.69 37.96 32.22900000214577 "AUT" "728" 1 4975.684 88.715 13.748 45436.69 37.099 48.55199992656708 "AUT" "729" 1 11650.05 123.135 13.748 45436.69 51.16549 68.2590000629425 "AUT" "730" 1 31361.7 353.526 13.748 45436.69 78.11833 96.10800004005432 "AUT" "731" 1 40062.07 690.842 13.748 45436.69 75.60065 82.01200008392334 "AUT" "732" 1 46011.5 857.279 13.748 45436.69 82.41 621.3060022592545 "AUT" "733" 1 51012.61 950.546 13.748 45436.69 77.68072 616.4529972076416 "AUT" "734" 1 60648.98 1036.929 13.748 45436.69 73.64323 948.628002166748 "AUT" "735" 1 67616.25 1119.981 13.748 45436.69 76.50565 682.4149961471558 "BEL" "720" 1 . . 12.849 42658.57 . 0 "BEL" "721" 1 .086 . 12.849 42658.57 11.11 0 "BEL" "722" 1 1102.28 60.83 12.849 42658.57 49.22323 5.964999980293214 "BEL" "723" 1 4186.42 655.242 12.849 42658.57 81.48 29.173000007867813 "BEL" "724" 1 5037.354 816.852 12.849 42658.57 76.55226 42.566000163555145 "BEL" "725" 1 5300.176 841.011 12.849 42658.57 57.06667 32.24299994111061 "BEL" "726" 1 5932.121 849.122 12.849 42658.57 51.34387 37.502999782562256 "BEL" "727" 1 7354.515 862.496 12.849 42658.57 59.01807 51.99800008535385 "BEL" "728" 1 10220.528 864.222 12.849 42658.57 52.59467 84.97600030899048 "BEL" "729" 1 37035.652 1003.053 12.849 42658.57 49.90968 148.70399951934814 "BEL" "730" 1 49815.71 1436.199 12.849 42658.57 64.50633 78.7229995727539 "BEL" "731" 1 55782.35 1684.957 12.849 42658.57 60.19 89.08400005102158 "BEL" "732" 1 61274.94 1819.905 12.849 42658.57 60.63677 114.38999915122986 "BEL" "733" 1 66569.16 1904.895 12.849 42658.57 62.96 103.30099940299988 "BEL" "734" 1 76141.695 1985.916 12.849 42658.57 63.6771 151.20799911022186 "BEL" "735" 1 84076.81 2072.89 12.849 42658.57 71.53167 79.00800001621246 "BGR" "720" 0 . . 13.272 18563.307 . 0 "BGR" "721" 0 . . 13.272 18563.307 . 0 "BGR" "722" 0 57.423 1.151 13.272 18563.307 58.065 0 "BGR" "723" 0 216.739 9.499 13.272 18563.307 72.28667 0 "BGR" "724" 0 361.664 20.148 13.272 18563.307 61.23097 4.5290000177919865 "BGR" "725" 0 718.002 33.101 13.272 18563.307 39.443 6.953999996185303 "BGR" "726" 0 1682.391 55.12 13.272 18563.307 37.633224 16.105999991297722 "BGR" "727" 0 2340.955 90.524 13.272 18563.307 39.15903 17.88699994981289 "BGR" "728" 0 2998.225 118.732 13.272 18563.307 36.916664 12.54399998486042 "BGR" "729" 0 7605.155 184.07 13.272 18563.307 37.249355 27.395000010728836 "BGR" "730" 0 20911.154 580.705 13.272 18563.307 49.261 36.22800004482269 "BGR" "731" 0 29109.535 1090.316 13.272 18563.307 53.91 22.948999918997288 "BGR" "732" 0 31481.576 1301.73 13.272 18563.307 53.7 34.54800011217594 "BGR" "733" 0 35552.992 1466.659 13.272 18563.307 53.7 28.71500000357628 "BGR" "734" 0 49310.75 1899.274 13.272 18563.307 55.55452 27.76800027489662 "BGR" "735" 0 57207.04 2289.289 13.272 18563.307 53.7 42.14699983596802 "BIH" "720" 0 . . 10.711 11713.895 . 0 "BIH" "721" 0 . . 10.711 11713.895 . 0 "BIH" "722" 0 128.017 3.962 10.711 11713.895 60.59481 0 "BIH" "723" 0 535.538 21.031 10.711 11713.895 91.32433 8.330000072717667 "BIH" "724" 0 765.054 46.635 10.711 11713.895 79.36097 10.49300005286932 "BIH" "725" 0 1357.285 56.693 10.711 11713.895 52.962 5.308000028133392 "BIH" "726" 0 3619.832 103.328 10.711 11713.895 56.6 7.0019999742507935 "BIH" "727" 0 6085.073 185.625 10.711 11713.895 57.04839 9.232999980449677 "BIH" "728" 0 8372.615 260.911 10.711 11713.895 41.852 10.772000074386597 "BIH" "729" 0 15267.548 376.126 10.711 11713.895 41.2771 18.239000041037798 "BIH" "730" 0 26792.43 817.175 10.711 11713.895 47.53 31.345999717712402 "BIH" "731" 0 33828.484 1234.449 10.711 11713.895 46.05677 29.34599980711937 "BIH" "732" 0 37032.566 1426.17 10.711 11713.895 42.59 -7.527000188827515 "BIH" "733" 0 39922.7 1545.653 10.711 11713.895 42.59 12.997999966144562 "BIH" "734" 0 51702.4 2011.39 10.711 11713.895 42.59 28.668000280857086 "BIH" "735" 0 59355.07 2500.293 10.711 11713.895 44.40304 18.794000029563904 "BRA" "720" 1 . . 5.06 14103.452 . 0 "BRA" "721" 1 .009 . 5.06 14103.452 5.56 0 "BRA" "722" 1 26.896 .946 5.06 14103.452 43.99645 0 "BRA" "723" 1 410.177 28.256 5.06 14103.452 75.00166 0 end
The date includes years and months from 720=2020m1 to 735=2021m4 (even though here they are displayed as integers); country_system is equal to 1 if the country has a federal system 0 otherwise; total_cases_per_million and total_deaths_per_million would be my control variables, and the rest of the variables are controls.
Because of colinearity, I cannot use - xtreg, fe -. However, the dummy variable country_system is crucial for this analysis. Therefore, I would like to ask if there is anyone to know how to address this problem in this context and if it would be needed to specify a different model.
Thank you in advance to whoever is willing to take the time to help.
Best regards
Alessio Lombini
Comment