Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • fitstat after logit and after logistic

    According to its help the .ado-program -fitstat- (source see below) should calculate McKelvey-Zavoina's R² for binary logit models. This worked fine until one of my latest updates of .ado-programs. Now, however, it will only calculate McKelvey-Zavoina's R² as a post-estimation command after -logit-, not anymore after -logistic-:
    Code:
    . sysuse auto, clear
    (1978 Automobile Data)
    
    . logit foreign price
    
    Iteration 0:   log likelihood =  -45.03321  
    Iteration 1:   log likelihood = -44.947363  
    Iteration 2:   log likelihood =  -44.94724  
    Iteration 3:   log likelihood =  -44.94724  
    
    Logistic regression                             Number of obs     =         74
                                                    LR chi2(1)        =       0.17
                                                    Prob > chi2       =     0.6784
    Log likelihood =  -44.94724                     Pseudo R2         =     0.0019
    
    ------------------------------------------------------------------------------
         foreign |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           price |   .0000353   .0000844     0.42   0.676    -.0001301    .0002006
           _cons |  -1.079792   .5878344    -1.84   0.066    -2.231927    .0723419
    ------------------------------------------------------------------------------
    
    . fitstat
    
                             |       logit
    -------------------------+-------------
    Log-likelihood           |             
                       Model |     -44.947
              Intercept-only |     -45.033
    -------------------------+-------------
    Chi-square               |             
             Deviance(df=72) |      89.894
                    LR(df=1) |       0.172
                     p-value |       0.678
    -------------------------+-------------
    R2                       |             
                    McFadden |       0.002
          McFadden(adjusted) |      -0.043
          McKelvey & Zavoina |       0.003
                Cox-Snell/ML |       0.002
      Cragg-Uhler/Nagelkerke |       0.003
                       Efron |       0.002
                    Tjur's D |       0.002
                       Count |       0.703
             Count(adjusted) |       0.000
    -------------------------+-------------
    IC                       |             
                         AIC |      93.894
            AIC divided by N |       1.269
                   BIC(df=2) |      98.503
    -------------------------+-------------
    Variance of              |             
                           e |       3.290
                      y-star |       3.301
    
    . logistic foreign price
    
    Logistic regression                             Number of obs     =         74
                                                    LR chi2(1)        =       0.17
                                                    Prob > chi2       =     0.6784
    Log likelihood =  -44.94724                     Pseudo R2         =     0.0019
    
    ------------------------------------------------------------------------------
         foreign | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           price |   1.000035   .0000844     0.42   0.676     .9998699    1.000201
           _cons |    .339666   .1996674    -1.84   0.066     .1073214    1.075023
    ------------------------------------------------------------------------------
    Note: _cons estimates baseline odds.
    
    . fitstat
    
                             |    logistic
    -------------------------+-------------
    Log-likelihood           |             
                       Model |     -44.947
              Intercept-only |     -45.033
    -------------------------+-------------
    Chi-square               |             
             Deviance(df=72) |      89.894
                    LR(df=1) |       0.172
                     p-value |       0.678
    -------------------------+-------------
    R2                       |             
                    McFadden |       0.002
          McFadden(adjusted) |      -0.043
                Cox-Snell/ML |       0.002
      Cragg-Uhler/Nagelkerke |       0.003
                       Efron |       0.002
                    Tjur's D |       0.002
                       Count |       0.703
             Count(adjusted) |       0.000
    -------------------------+-------------
    IC                       |             
                         AIC |      93.894
            AIC divided by N |       1.269
                   BIC(df=2) |      98.503
    Is there anybody with a version of -fitstat- that will calculate McKelvey-Zavoina's R² after -logistic-? Which version is it and from where did you install it? Or is there anybody who can suggest a modification to the the current version (see below) of fitstat.ado to produce this statistic after -logistic-, as well? I had a look at the source code, but couldn't find the correct place for a respective modification.

    The .ado-program -fitstat- is part of several different packages (and its versions) and it is not easy to find or update to the most recent one. Here I am referring to -fitstat- that is part of the package spost13_ado as it is available from "https://jslsoc.sitehost.iu.edu/stata" via
    Code:
    net install spost13_ado, from(https://jslsoc.sitehost.iu.edu/stata)
    with version number
    Code:
    *! 4.1.10 | 2017-01-05 | freese long | fixed bug in tobit (for v <14 and 15+)

  • #2
    Is there any special reason why you are using logistic? It has been superseded by the -or- option of logit.

    Code:
    sysuse auto, clear
    logit foreign price, or
    fitstat
    Res.:

    Code:
    . logit foreign price, or
    
    Iteration 0:   log likelihood =  -45.03321  
    Iteration 1:   log likelihood = -44.947363  
    Iteration 2:   log likelihood =  -44.94724  
    Iteration 3:   log likelihood =  -44.94724  
    
    Logistic regression                             Number of obs     =         74
                                                    LR chi2(1)        =       0.17
                                                    Prob > chi2       =     0.6784
    Log likelihood =  -44.94724                     Pseudo R2         =     0.0019
    
    ------------------------------------------------------------------------------
         foreign | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           price |   1.000035   .0000844     0.42   0.676     .9998699    1.000201
           _cons |    .339666   .1996674    -1.84   0.066     .1073214    1.075023
    ------------------------------------------------------------------------------
    Note: _cons estimates baseline odds.
    
    . 
    . fitstat
    
                             |       logit 
    -------------------------+-------------
    Log-likelihood           |             
                       Model |     -44.947 
              Intercept-only |     -45.033 
    -------------------------+-------------
    Chi-square               |             
             Deviance(df=72) |      89.894 
                    LR(df=1) |       0.172 
                     p-value |       0.678 
    -------------------------+-------------
    R2                       |             
                    McFadden |       0.002 
          McFadden(adjusted) |      -0.043 
          McKelvey & Zavoina |       0.003 
                Cox-Snell/ML |       0.002 
      Cragg-Uhler/Nagelkerke |       0.003 
                       Efron |       0.002 
                    Tjur's D |       0.002 
                       Count |       0.703 
             Count(adjusted) |       0.000 
    -------------------------+-------------
    IC                       |             
                         AIC |      93.894 
            AIC divided by N |       1.269 
                   BIC(df=2) |      98.503 
    -------------------------+-------------
    Variance of              |             
                           e |       3.290 
                      y-star |       3.301 
    
    .

    Comment


    • #3
      Thanks, I didn't thought of this alternative, that solves it. And no, there is no special reason but there are old .do-files that still use -logistic-, but that can be changed more easily.

      Comment

      Working...
      X