Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Help with xtdpdsys command

    Dear Statalist members,

    I have been trying to implement xtdpdsys in my paper. However, based on my data set the Arellano-Bond test is showing second autocorrelation. I tried to add additional lags in order to control for autocorrelation but still it isn't working. As advised before, I am aware that the sample has a very small cross-sectional and a very large time dimension. Perhaps the problem is that I am not treating any of the variables as endogenous. Can you please advise whether this will help? If yes can you please advise how to determine which variables is endogenous?


    The table is showing the results with 3 lags on the explanatory variables and 1 lag on the dependent variable (llrgl)

    Code:
    xtdpdsys llrgl L(0/3).(car lerner high_copm ownership_concentration  insitution cir deposit_asset netloantotalassets otherearningassets incomediversity  size  luqidasset gdp_growth inflation) crisis_d  gcc_d  d_iraq d_bahrain d_syrianarabrepublic d_palestinianterritories d_oman d_tunisia d_yemen d_saudiarabia d_jordan d_kuwait d_iran d_unitedarabemirates d_qatar d_lebanon d_egypt d_morocco  d_libya d_algeria d_israel, lags(1) maxldep(1) level(95.0) artests(3) vce(robust)
    Code:
    System dynamic panel-data estimation         Number of obs         =      2222
    Group variable: y                            Number of groups      =        14
    Time variable: banks1
                                                 Obs per group:    min =       155
                                                                   avg =  158.7143
                                                                   max =       159
    
    Number of instruments =    352               Wald chi2(13)         =    515.77
                                                 Prob > chi2           =    0.0000
    One-step results
    ------------------------------------------------------------------------------
                 |               Robust
           llrgl |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           llrgl |
             L1. |   .0407633   .0193516     2.11   0.035     .0028349    .0786917
                 |
             car |
             --. |   .0728625   .0182213     4.00   0.000     .0371494    .1085756
             L1. |   .0630444    .036326     1.74   0.083    -.0081533    .1342421
             L2. |  -.0337567   .0159734    -2.11   0.035    -.0650639   -.0024494
             L3. |   .0508269   .0195311     2.60   0.009     .0125466    .0891073
                 |
          lerner |
             --. |   .1363728    .090361     1.51   0.131    -.0407315    .3134771
             L1. |   .0351335   .0148506     2.37   0.018     .0060268    .0642402
             L2. |   .0017673   .0087028     0.20   0.839    -.0152899    .0188245
             L3. |  -.0502972   .0125289    -4.01   0.000    -.0748534    -.025741
                 |
       high_copm |
             --. |  -.0483173   .0131467    -3.68   0.000    -.0740844   -.0225503
             L1. |   .0040067   .0064278     0.62   0.533    -.0085915    .0166049
             L2. |  -.0043492   .0050352    -0.86   0.388    -.0142181    .0055196
             L3. |   .0062063   .0074331     0.83   0.404    -.0083623    .0207749
                 |
    ownership~on |
             --. |  -.0231074   .0061234    -3.77   0.000    -.0351089   -.0111058
             L1. |  -.0115021   .0040053    -2.87   0.004    -.0193524   -.0036517
             L2. |  -.0066738   .0047957    -1.39   0.164    -.0160733    .0027257
             L3. |   -.012933   .0029764    -4.35   0.000    -.0187666   -.0070993
                 |
      insitution |
             --. |  -.0030289   .0291527    -0.10   0.917    -.0601671    .0541094
             L1. |   .0032964   .0044128     0.75   0.455    -.0053525    .0119453
             L2. |   .0043656   .0023974     1.82   0.069    -.0003331    .0090644
             L3. |  -.0100826   .0038068    -2.65   0.008    -.0175437   -.0026215
                 |
             cir |   .0008092   .0003124     2.59   0.010     .0001968    .0014216
    deposit_as~t |    .017724    .017597     1.01   0.314    -.0167656    .0522135
    netloantot~s |   .0331774   .0120139     2.76   0.006     .0096307    .0567242
    otherearni~s |  -.0082478   .0148334    -0.56   0.578    -.0373207    .0208251
    incomedive~y |   .0085052   .0092001     0.92   0.355    -.0095266    .0265369
            size |   .0044612    .001072     4.16   0.000     .0023601    .0065623
      luqidasset |   .0667871   .0285112     2.34   0.019     .0109061    .1226681
      gdp_growth |  -.4109581   .0946169    -4.34   0.000    -.5964038   -.2255124
       inflation |   .0026501    .081276     0.03   0.974    -.1566481    .1619482
        crisis_d |  -.0768883   .0163605    -4.70   0.000    -.1089543   -.0448223
           gcc_d |  -.0050734   .0604517    -0.08   0.933    -.1235566    .1134098
          d_iraq |   .0424741   .0491773     0.86   0.388    -.0539116    .1388597
       d_bahrain |   .0841493   .0366003     2.30   0.021     .0124141    .1558846
    d_syrianar~c |   .2228825   .0456774     4.88   0.000     .1333565    .3124085
    d_palestin~s |  -.0174973   .0621769    -0.28   0.778    -.1393619    .1043673
          d_oman |  -.0048881   .0186836    -0.26   0.794    -.0415073    .0317311
       d_tunisia |    .030472   .0365098     0.83   0.404     -.041086    .1020299
         d_yemen |   .3075185    .073833     4.17   0.000     .1628084    .4522286
    d_saudiara~a |  -.0170867   .0280392    -0.61   0.542    -.0720426    .0378691
        d_jordan |   .0303965   .0368532     0.82   0.409    -.0418344    .1026274
        d_kuwait |   .0128424   .0294593     0.44   0.663    -.0448968    .0705817
    d_unitedar~s |   .0272542   .0159014     1.71   0.087    -.0039119    .0584204
       d_lebanon |   .0561996   .0302753     1.86   0.063    -.0031388     .115538
         d_egypt |   .0708349    .033966     2.09   0.037     .0042626    .1374071
       d_morocco |   .0575885   .0336841     1.71   0.087    -.0084312    .1236081
       d_algeria |  -.0193776   .0226192    -0.86   0.392    -.0637105    .0249552
        d_israel |   .0077773   .0635191     0.12   0.903    -.1167179    .1322724
           _cons |  -.0538288    .053439    -1.01   0.314    -.1585673    .0509096
    ------------------------------------------------------------------------------
    Instruments for differenced equation
            GMM-type: L(2/2).llrgl
            Standard: D.car LD.car L2D.car L3D.car D.lerner LD.lerner L2D.lerner L3D.lerner D.high_copm LD.high_copm L2D.high_copm L3D.high_copm D.ownership_concentration LD.ownership_concentration
                      L2D.ownership_concentration L3D.ownership_concentration D.insitution LD.insitution L2D.insitution L3D.insitution D.cir D.deposit_asset D.netloantotalassets D.otherearningassets
                      D.incomediversity D.size D.luqidasset D.gdp_growth D.inflation D.crisis_d D.gcc_d D.d_iraq D.d_bahrain D.d_syrianarabrepublic D.d_palestinianterritories D.d_oman D.d_tunisia
                      D.d_yemen D.d_jordan D.d_kuwait D.d_unitedarabemirates D.d_qatar D.d_lebanon D.d_egypt D.d_morocco D.d_algeria D.d_israel
    Instruments for level equation
            GMM-type: LD.llrgl
            Standard: _cons
    
    . estat abond
    artests not computed for one-step system estimator with vce(gmm)
    
    Arellano-Bond test for zero autocorrelation in first-differenced errors
      +-----------------------+
      |Order |  z     Prob > z|
      |------+----------------|
      |   1  |-3.1457  0.0017 |
      |   2  | 2.1788  0.0293 |
      |   3  |-1.5398  0.1236 |
      +-----------------------+
       H0: no autocorrelation
    I would really appreciate your help if you have any recommendations or comments.
    Best Regards,
    Petko Bachvarov
Working...
X