Hi,
I am trying to figure out why my standard error are too small and whether this model is feasible since the main variables are all omitted leaving only the interactions variables. Should I just use OLS instead and is it possible to use only fixed effects on quarters or year? Any thoughts on this?
I have a three way panel data which I use command below
I then use xtset on i and t and regress as below
Thank you!
I am trying to figure out why my standard error are too small and whether this model is feasible since the main variables are all omitted leaving only the interactions variables. Should I just use OLS instead and is it possible to use only fixed effects on quarters or year? Any thoughts on this?
I have a three way panel data which I use command below
Code:
egen pan_id = group(gender agegroup)
Code:
xtset pan_id qyear
Code:
. xtreg lnemp i.gender##ib5.agegroup##i.covid i.quarter i.year, fe vce(r) note: 2.gender omitted because of collinearity note: 1.agegroup omitted because of collinearity note: 2.agegroup omitted because of collinearity note: 3.agegroup omitted because of collinearity note: 4.agegroup omitted because of collinearity note: 2.gender#1.agegroup omitted because of collinearity note: 2.gender#2.agegroup omitted because of collinearity note: 2.gender#3.agegroup omitted because of collinearity note: 2.gender#4.agegroup omitted because of collinearity Fixed-effects (within) regression Number of obs = 160 Group variable: pan_id Number of groups = 10 R-sq: Obs per group: within = 0.6450 min = 16 between = 0.1870 avg = 16.0 overall = 0.0070 max = 16 F(6,9) = . corr(u_i, Xb) = -0.1448 Prob > F = . (Std. Err. adjusted for 10 clusters in pan_id) --------------------------------------------------------------------------------------- | Robust lnemp | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- gender | Male | 0 (omitted) | agegroup | 15-24 | 0 (omitted) 25-34 | 0 (omitted) 35-44 | 0 (omitted) 45-54 | 0 (omitted) | gender#agegroup | Male#15-24 | 0 (omitted) Male#25-34 | 0 (omitted) Male#35-44 | 0 (omitted) Male#45-54 | 0 (omitted) | 1.covid | .0765138 .0136277 5.61 0.000 .0456857 .1073419 | gender#covid | Male#1 | -.0253093 1.19e-16 -2.1e+14 0.000 -.0253093 -.0253093 | agegroup#covid | 15-24#1 | -.2049255 7.45e-17 -2.8e+15 0.000 -.2049255 -.2049255 25-34#1 | -.1201755 5.82e-17 -2.1e+15 0.000 -.1201755 -.1201755 35-44#1 | -.0738413 5.28e-17 -1.4e+15 0.000 -.0738413 -.0738413 45-54#1 | -.0746435 5.48e-17 -1.4e+15 0.000 -.0746435 -.0746435 | gender#agegroup#covid | Male#15-24#1 | .0587779 1.45e-16 4.1e+14 0.000 .0587779 .0587779 Male#25-34#1 | .0281182 1.28e-16 2.2e+14 0.000 .0281182 .0281182 Male#35-44#1 | .0289398 1.22e-16 2.4e+14 0.000 .0289398 .0289398 Male#45-54#1 | -.016157 1.28e-16 -1.3e+14 0.000 -.016157 -.016157 | quarter | 2 | .0045243 .006701 0.68 0.517 -.0106345 .0196831 3 | .0179993 .0073301 2.46 0.036 .0014176 .0345811 4 | .0175383 .0051526 3.40 0.008 .0058823 .0291944 | year | 2018 | .0276628 .0057882 4.78 0.001 .014569 .0407565 2019 | .0511159 .0088087 5.80 0.000 .0311892 .0710425 2020 | .0689929 .0159836 4.32 0.002 .0328355 .1051504 | _cons | 7.124184 .0073743 966.09 0.000 7.107502 7.140866 ----------------------+---------------------------------------------------------------- sigma_u | .58711638 sigma_e | .02629098 rho | .99799878 (fraction of variance due to u_i)
Comment