Hello,
I am estimating a model where I have averaged the data in 5 year periods such as there are 5 observations per country. All variables are potentially endogenous. To account for time-specific effects I have included time dummies. However, when I run the system GMM with time dummies in the iv() part, the Hansen test shows that the instrument set is not good. What can be the reason that time dummies affect Hansen's test so significantly? Moreover, would it be correct not to include them in the iv() part?
1) System GMM without time dumies in the iv() part
xtabond2 diff_gdp log_initial log_Vtraded log_prcreditBI log_trade log_govsize log_school log_infl td? , gmm
> (L.( log_initial log_Vtraded log_prcreditBI log_trade log_govsize log_school log_infl) , lag(. .) collapse)
> two robust
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
td3 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: Country_ Number of obs = 328
Time variable : period Number of groups = 67
Number of instruments = 29 Obs per group: min = 3
Wald chi2(11) = 94.93 avg = 4.90
Prob > chi2 = 0.000 max = 5
--------------------------------------------------------------------------------
| Corrected
diff_gdp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
log_initial | -.0058507 .0115582 -0.51 0.613 -.0285044 .0168031
log_Vtraded | .0097747 .0048255 2.03 0.043 .0003169 .0192324
log_prcreditBI | -.004026 .0117632 -0.34 0.732 -.0270813 .0190294
log_trade | -.0131724 .0224614 -0.59 0.558 -.0571959 .0308512
log_govsize | -.0157441 .0082085 -1.92 0.055 -.0318325 .0003443
log_school | .0245715 .0386341 0.64 0.525 -.05115 .100293
log_infl | -.0105925 .0047663 -2.22 0.026 -.0199343 -.0012507
td1 | .0193431 .0139906 1.38 0.167 -.0080779 .0467641
td2 | .0104521 .0041221 2.54 0.011 .002373 .0185312
td4 | .0059646 .0052567 1.13 0.257 -.0043384 .0162676
td5 | -.0030673 .0061593 -0.50 0.618 -.0151394 .0090047
_cons | .1274611 .0767582 1.66 0.097 -.0229823 .2779045
--------------------------------------------------------------------------------
Instruments for first differences equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/4).(L.log_initial L.log_Vtraded L.log_prcreditBI L.log_trade
L.log_govsize L.log_school L.log_infl) collapsed
Instruments for levels equation
Standard
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.(L.log_initial L.log_Vtraded L.log_prcreditBI L.log_trade L.log_govsize
L.log_school L.log_infl) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -2.22 Pr > z = 0.026
Arellano-Bond test for AR(2) in first differences: z = -1.52 Pr > z = 0.129
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(17) = 26.25 Prob > chi2 = 0.070
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(17) = 23.78 Prob > chi2 = 0.126
(Robust, but weakened by many instruments.)
2) System GMM with time dummies in the iv() part
xtabond2 diff_gdp log_initial log_Vtraded log_prcreditBI log_trade log_govsize log_school log_infl td* , gmm
> (L.( log_initial log_Vtraded log_prcreditBI log_trade log_govsize log_school log_infl) , lag(. .) collapse) i
> v(td*) two robust
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
td3 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
Group variable: Country_ Number of obs = 328
Time variable : period Number of groups = 67
Number of instruments = 33 Obs per group: min = 3
Wald chi2(11) = 81.10 avg = 4.90
Prob > chi2 = 0.000 max = 5
Corrected
diff_gdp Coef. Std. Err. z P>z [95% Conf. Interval]
log_initial -.0087372 .0118574 -0.74 0.461 -.0319773 .0145029
log_Vtraded .010024 .0040155 2.50 0.013 .0021537 .0178943
log_prcreditBI -.010879 .0133469 -0.82 0.415 -.0370385 .0152805
log_trade .0056315 .0234532 0.24 0.810 -.040336 .0515989
log_govsize -.0149861 .0100768 -1.49 0.137 -.0347363 .0047641
log_school .0364438 .0401597 0.91 0.364 -.0422677 .1151553
log_infl -.0107413 .0054915 -1.96 0.050 -.0215044 .0000219
td1 .0227613 .0112086 2.03 0.042 .0007928 .0447298
td2 .0123142 .0050822 2.42 0.015 .0023533 .0222752
td4 .002834 .0058216 0.49 0.626 -.0085762 .0142442
td5 -.005791 .0076746 -0.75 0.451 -.0208329 .0092509
_cons .0740848 .0818758 0.90 0.366 -.0863888 .2345584
Instruments for first differences equation
Standard
D.(td1 td2 td3 td4 td5)
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/4).(L.log_initial L.log_Vtraded L.log_prcreditBI L.log_trade
L.log_govsize L.log_school L.log_infl) collapsed
Instruments for levels equation
Standard
td1 td2 td3 td4 td5
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.(L.log_initial L.log_Vtraded L.log_prcreditBI L.log_trade L.log_govsize
L.log_school L.log_infl) collapsed
Arellano-Bond test for AR(1) in first differences: z = -2.00 Pr > z = 0.046
Arellano-Bond test for AR(2) in first differences: z = -1.50 Pr > z = 0.134
Sargan test of overid. restrictions: chi2(21) = 44.65 Prob > chi2 = 0.002
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(21) = 36.83 Prob > chi2 = 0.018
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(14) = 26.41 Prob > chi2 = 0.023
Difference (null H = exogenous): chi2(7) = 10.42 Prob > chi2 = 0.166
iv(td1 td2 td3 td4 td5)
Hansen test excluding group: chi2(17) = 26.68 Prob > chi2 = 0.063
Difference (null H = exogenous): chi2(4) = 10.14 Prob > chi2 = 0.038
Thank you !
I am estimating a model where I have averaged the data in 5 year periods such as there are 5 observations per country. All variables are potentially endogenous. To account for time-specific effects I have included time dummies. However, when I run the system GMM with time dummies in the iv() part, the Hansen test shows that the instrument set is not good. What can be the reason that time dummies affect Hansen's test so significantly? Moreover, would it be correct not to include them in the iv() part?
1) System GMM without time dumies in the iv() part
xtabond2 diff_gdp log_initial log_Vtraded log_prcreditBI log_trade log_govsize log_school log_infl td? , gmm
> (L.( log_initial log_Vtraded log_prcreditBI log_trade log_govsize log_school log_infl) , lag(. .) collapse)
> two robust
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
td3 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: Country_ Number of obs = 328
Time variable : period Number of groups = 67
Number of instruments = 29 Obs per group: min = 3
Wald chi2(11) = 94.93 avg = 4.90
Prob > chi2 = 0.000 max = 5
--------------------------------------------------------------------------------
| Corrected
diff_gdp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
log_initial | -.0058507 .0115582 -0.51 0.613 -.0285044 .0168031
log_Vtraded | .0097747 .0048255 2.03 0.043 .0003169 .0192324
log_prcreditBI | -.004026 .0117632 -0.34 0.732 -.0270813 .0190294
log_trade | -.0131724 .0224614 -0.59 0.558 -.0571959 .0308512
log_govsize | -.0157441 .0082085 -1.92 0.055 -.0318325 .0003443
log_school | .0245715 .0386341 0.64 0.525 -.05115 .100293
log_infl | -.0105925 .0047663 -2.22 0.026 -.0199343 -.0012507
td1 | .0193431 .0139906 1.38 0.167 -.0080779 .0467641
td2 | .0104521 .0041221 2.54 0.011 .002373 .0185312
td4 | .0059646 .0052567 1.13 0.257 -.0043384 .0162676
td5 | -.0030673 .0061593 -0.50 0.618 -.0151394 .0090047
_cons | .1274611 .0767582 1.66 0.097 -.0229823 .2779045
--------------------------------------------------------------------------------
Instruments for first differences equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/4).(L.log_initial L.log_Vtraded L.log_prcreditBI L.log_trade
L.log_govsize L.log_school L.log_infl) collapsed
Instruments for levels equation
Standard
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.(L.log_initial L.log_Vtraded L.log_prcreditBI L.log_trade L.log_govsize
L.log_school L.log_infl) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -2.22 Pr > z = 0.026
Arellano-Bond test for AR(2) in first differences: z = -1.52 Pr > z = 0.129
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(17) = 26.25 Prob > chi2 = 0.070
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(17) = 23.78 Prob > chi2 = 0.126
(Robust, but weakened by many instruments.)
2) System GMM with time dummies in the iv() part
xtabond2 diff_gdp log_initial log_Vtraded log_prcreditBI log_trade log_govsize log_school log_infl td* , gmm
> (L.( log_initial log_Vtraded log_prcreditBI log_trade log_govsize log_school log_infl) , lag(. .) collapse) i
> v(td*) two robust
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
td3 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
Group variable: Country_ Number of obs = 328
Time variable : period Number of groups = 67
Number of instruments = 33 Obs per group: min = 3
Wald chi2(11) = 81.10 avg = 4.90
Prob > chi2 = 0.000 max = 5
Corrected
diff_gdp Coef. Std. Err. z P>z [95% Conf. Interval]
log_initial -.0087372 .0118574 -0.74 0.461 -.0319773 .0145029
log_Vtraded .010024 .0040155 2.50 0.013 .0021537 .0178943
log_prcreditBI -.010879 .0133469 -0.82 0.415 -.0370385 .0152805
log_trade .0056315 .0234532 0.24 0.810 -.040336 .0515989
log_govsize -.0149861 .0100768 -1.49 0.137 -.0347363 .0047641
log_school .0364438 .0401597 0.91 0.364 -.0422677 .1151553
log_infl -.0107413 .0054915 -1.96 0.050 -.0215044 .0000219
td1 .0227613 .0112086 2.03 0.042 .0007928 .0447298
td2 .0123142 .0050822 2.42 0.015 .0023533 .0222752
td4 .002834 .0058216 0.49 0.626 -.0085762 .0142442
td5 -.005791 .0076746 -0.75 0.451 -.0208329 .0092509
_cons .0740848 .0818758 0.90 0.366 -.0863888 .2345584
Instruments for first differences equation
Standard
D.(td1 td2 td3 td4 td5)
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/4).(L.log_initial L.log_Vtraded L.log_prcreditBI L.log_trade
L.log_govsize L.log_school L.log_infl) collapsed
Instruments for levels equation
Standard
td1 td2 td3 td4 td5
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.(L.log_initial L.log_Vtraded L.log_prcreditBI L.log_trade L.log_govsize
L.log_school L.log_infl) collapsed
Arellano-Bond test for AR(1) in first differences: z = -2.00 Pr > z = 0.046
Arellano-Bond test for AR(2) in first differences: z = -1.50 Pr > z = 0.134
Sargan test of overid. restrictions: chi2(21) = 44.65 Prob > chi2 = 0.002
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(21) = 36.83 Prob > chi2 = 0.018
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(14) = 26.41 Prob > chi2 = 0.023
Difference (null H = exogenous): chi2(7) = 10.42 Prob > chi2 = 0.166
iv(td1 td2 td3 td4 td5)
Hansen test excluding group: chi2(17) = 26.68 Prob > chi2 = 0.063
Difference (null H = exogenous): chi2(4) = 10.14 Prob > chi2 = 0.038
Thank you !
Comment