Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • More than one change point in interrupted time-series

    Dear colleagues the data below is a subset of my data that I am intending to analyse using interrupted time series. I am assesing long term impact of an intervention using interrupted time series. The intervention was introduced into population in Jan 2011, however am dropping the first three months of 2011 as transition period so am beginning my post intervention period from April 2011. I want to break post intervention period into two; that is (April 2011-march 2015) and (April 2015 -December 2019). My intention is to compare the first post intervention period (April 2011-march 2015) to pre-intervention period (May 2002-December 2010), and also to compare second post intervention period (April 2015 -December 2019) to first post intervention period (April 2011-march 2015). After looking at cigsales dataset (stata help itsa) I arranged my dataset the same way as presented below to calculate level effect(Immediate change).However since in mind I know the immediate change that is associated with first post intervention period (April 2011-march 2015) compares with pre_intervention period (May 2002-December 2010), I dropped observations from April 2015 onwards and analysed the data comparing one post period to pre period i.e (April 2011-march 2015) and (May 2002-December 2010) to see if I will get the same results.However, to my suprise the results differs. So my question is ;
    i)Is the arrangement I have done in the below data using sigsales example in stata correct?will coefficient of vacperiod1 be associated with post period (April 2011-march 2015) only? will coefficient of vacperiod2 be associated with post (April 2015 -December 2019) only?.Am asking because using this arrangement vacperiod1 has the value 1 even in period (April 2015 -December 2019) when vacperiod2 is 1.

    Am associating Vacperiod1 with (April 2011-march 2015)
    Am associating vacperiod2 with (Aprill 2015-December 2019)

    arima lograte m2-m12 time vacperiod1 vacperiod2, arima(1,0,0) ;This is the model have run for two post periods(Vacperiod1 and vacperiod2)
    arima lograte m2-m12 time vacperiod1, arima(1,0,0) ;This is the model have run by dropping 2015 April onwards,just for sensitivity to see if vacperiod1 coefficient is the same in both models.
    m2-m12 are months dummies generated from adm_mon to control for seasonality.

    Can someone show me an arrangement that will work if this arrangement is not right (Comparing post periods to each other ;and first post period to pre period) interms of immediate change since am pretty sure there is no interraction between time and either of the vacperiods.
    Regards,
    Fred Orwa

    nput double(adm_year adm_mon) float(time vacperiod1 vacperiod2 lograte)
    2002 5 1 0 0 7.198776
    2002 6 2 0 0 7.245296
    2002 7 3 0 0 6.957614
    2002 8 4 0 0 7.098693
    2002 9 5 0 0 6.828403
    2002 10 6 0 0 7.267769
    2002 11 7 0 0 7.765172
    2002 12 8 0 0 8.28942
    2003 1 9 0 0 8.186145
    2003 2 10 0 0 7.6156
    2003 3 11 0 0 7.202413
    2003 4 12 0 0 7.130092
    2003 5 13 0 0 7.130092
    2003 6 14 0 0 7.484264
    2003 7 15 0 0 8.228704
    2003 8 16 0 0 8.036332
    2003 9 17 0 0 7.675319
    2003 10 18 0 0 7.797921
    2003 11 19 0 0 7.918549
    2003 12 20 0 0 7.675319
    2004 1 21 0 0 7.594406
    2004 2 22 0 0 7.564101
    2004 3 23 0 0 7.86705
    2004 4 24 0 0 7.954062
    2004 5 25 0 0 7.911502
    2004 6 26 0 0 7.260915
    2004 7 27 0 0 7.62382
    2004 8 28 0 0 7.855622
    2004 9 29 0 0 7.720447
    2004 10 30 0 0 7.77174
    2004 11 31 0 0 7.594406
    2004 12 32 0 0 8.264911
    2005 1 33 0 0 8.22973
    2005 2 34 0 0 7.559572
    2005 3 35 0 0 7.058796
    2005 4 36 0 0 6.980834
    2005 5 37 0 0 6.980834
    2005 6 38 0 0 6.835653
    2005 7 39 0 0 7.395268
    2005 8 40 0 0 7.464262
    2005 9 41 0 0 7.154107
    2005 10 42 0 0 7.480791
    2005 11 43 0 0 7.220064
    2005 12 44 0 0 7.954884
    2006 1 45 0 0 7.675952
    2006 2 46 0 0 7.940339
    2006 3 47 0 0 7.701928
    2006 4 48 0 0 7.405662
    2006 5 49 0 0 7.370571
    2006 6 50 0 0 7.456093
    2006 7 51 0 0 7.593714
    2006 8 52 0 0 7.151881
    2006 9 53 0 0 7.422756
    2006 10 54 0 0 7.21642
    2006 11 55 0 0 7.579325
    2006 12 56 0 0 7.877819
    2007 1 57 0 0 7.848806
    2007 2 58 0 0 7.721467
    2007 3 59 0 0 7.531711
    2007 4 60 0 0 6.792754
    2007 5 61 0 0 6.823525
    2007 6 62 0 0 6.99058
    2007 7 63 0 0 7.155659
    2007 8 64 0 0 7.155659
    2007 9 65 0 0 7.04059
    2007 10 66 0 0 7.334351
    2007 11 67 0 0 7.657752
    2007 12 68 0 0 7.709044
    2008 1 69 0 0 7.845654
    2008 2 70 0 0 7.528559
    2008 3 71 0 0 6.934784
    2008 4 72 0 0 7.037438
    2008 5 73 0 0 6.907385
    2008 6 74 0 0 6.850226
    2008 7 75 0 0 7.294158
    2008 8 76 0 0 7.401403
    2008 9 77 0 0 7.43474
    2008 10 78 0 0 7.085066
    2008 11 79 0 0 6.961452
    2008 12 80 0 0 6.820374
    2009 1 81 0 0 7.508337
    2009 2 82 0 0 7.670856
    2009 3 83 0 0 7.16003
    2009 4 84 0 0 6.844177
    2009 5 85 0 0 6.546926
    2009 6 86 0 0 6.844177
    2009 7 87 0 0 7.180649
    2009 8 88 0 0 7.565495
    2009 9 89 0 0 7.050029
    2009 10 90 0 0 6.977708
    2009 11 91 0 0 7.383173
    2009 12 92 0 0 7.883949
    2010 1 93 0 0 7.799155
    2010 2 94 0 0 7.708183
    2010 3 95 0 0 7.496874
    2010 4 96 0 0 6.832714
    2010 5 97 0 0 6.888284
    2010 6 98 0 0 6.803727
    2010 7 99 0 0 7.284699
    2010 8 100 0 0 7.209192
    2010 9 101 0 0 6.860885
    2010 10 102 0 0 6.966246
    2010 11 103 0 0 6.888284
    2010 12 104 0 0 7.015036
    2011 1 105 . . 7.103867
    2011 2 106 . . 7.434109
    2011 3 107 . . 7.207051
    2011 4 108 1 0 6.709213
    2011 5 109 1 0 6.801586
    2011 6 110 1 0 6.642521
    2011 7 111 1 0 6.366268
    2011 8 112 1 0 6.571063
    2011 9 113 1 0 6.60743
    2011 10 114 1 0 6.60743
    2011 11 115 1 0 7.22647
    2011 12 116 1 0 7.036426
    2012 1 117 1 0 7.325777
    2012 2 118 1 0 7.093976
    2012 3 119 1 0 7.049524
    2012 4 120 1 0 6.63263
    2012 5 121 1 0 6.098547
    2012 6 122 1 0 6.561171
    2012 7 123 1 0 6.699321
    2012 8 124 1 0 6.761842
    2012 9 125 1 0 6.561171
    2012 10 126 1 0 6.791695
    2012 11 127 1 0 7.596068
    2012 12 128 1 0 6.098547
    2013 1 129 1 0 5.840043
    2013 2 130 1 0 5.840043
    2013 3 131 1 0 6.108307
    2013 4 132 1 0 5.983144
    2013 5 133 1 0 6.319616
    2013 6 134 1 0 6.270826
    2013 7 135 1 0 6.410588
    2013 8 136 1 0 6.410588
    2013 9 137 1 0 6.410588
    2013 10 138 1 0 6.740829
    2013 11 139 1 0 6.938655
    2013 12 140 1 0 5.840043
    2014 1 141 1 0 6.462469
    2014 2 142 1 0 6.839763
    2014 3 143 1 0 6.616619
    2014 4 144 1 0 6.867934
    2014 5 145 1 0 6.580252
    2014 6 146 1 0 6.750151
    2014 7 147 1 0 6.616619
    2014 8 148 1 0 6.057003
    2014 9 149 1 0 6.280147
    2014 10 150 1 0 6.651711
    2014 11 151 1 0 7.045615
    2014 12 152 1 0 7.327466
    2015 1 153 1 0 6.969897
    2015 2 154 1 0 6.459071
    2015 3 155 1 0 6.499893
    2015 4 156 1 1 6.682215
    2015 5 157 1 1 6.225456
    2015 6 158 1 1 6.807378
    2015 7 159 1 1 7.172838
    2015 8 160 1 1 6.777525
    2015 9 161 1 1 6.171389
    2015 10 162 1 1 6.648313
    2015 11 163 1 1 6.613222
    2015 12 164 1 1 6.459071
    2016 1 165 1 1 6.743654
    2016 2 166 1 1 7.260911
    2016 3 167 1 1 6.567764
    2016 4 168 1 1 6.487721
    2016 5 169 1 1 6.200039
    2016 6 170 1 1 6.305399
    2016 7 171 1 1 6.567764
    2016 8 172 1 1 6.40071
    2016 9 173 1 1 6.40071
    2016 10 174 1 1 6.710865
    2016 11 175 1 1 6.14288
    2016 12 176 1 1 5.794574
    2017 1 177 1 1 6.302233
    2017 2 178 1 1 4.915939
    2017 3 179 1 1 6.740488
    2017 4 180 1 1 6.602338
    2017 5 181 1 1 6.196873
    2017 6 182 1 1 5.704396
    2017 7 183 1 1 5.385942
    2017 8 184 1 1 4.6927953
    2017 9 185 1 1 5.252411
    2017 10 186 1 1 5.252411
    2017 11 187 1 1 6.07909
    2017 12 188 1 1 6.25094
    2018 1 189 1 1 6.392123
    2018 2 190 1 1 6.134294
    2018 3 191 1 1 7.308414
    2018 4 192 1 1 6.911999
    2018 5 193 1 1 6.519957
    2018 6 194 1 1 6.668376
    2018 7 195 1 1 6.8846
    2018 8 196 1 1 6.392123
    2018 9 197 1 1 6.668376
    2018 10 198 1 1 6.668376
    2018 11 199 1 1 6.519957
    2018 12 200 1 1 6.392123
    2019 1 201 1 1 6.672774
    2019 2 202 1 1 6.771214
    2019 3 203 1 1 6.672774
    2019 4 204 1 1 6.831839
    2019 5 205 1 1 5.944536
    2019 6 206 1 1 6.013528
    2019 7 207 1 1 6.440972
    2019 8 208 1 1 6.483532
    2019 9 209 1 1 6.524354
    2019 10 210 1 1 6.739465
    2019 11 211 1 1 6.916396
    2019 12 212 1 1 6.916396
    end
    label values adm_mon mon
    label def mon 1 "Jan", modify
    label def mon 2 "Feb", modify
    label def mon 3 "Mar", modify
    label def mon 4 "Apr", modify
    label def mon 5 "May", modify
    label def mon 6 "Jun", modify
    label def mon 7 "July", modify
    label def mon 8 "Aug", modify
    label def mon 9 "Sep", modify
    label def mon 10 "Oct", modify
    label def mon 11 "Nov", modify
    label def mon 12 "Dec", modify


  • #2
    Still humbly requesting Forum support on this.

    Comment

    Working...
    X