Hey all
I have a (for many of you) pretty simple problem. It feels like I've tried 100 different things to make it work like I want it to, but I haven't quite nailed the solution as of yet.
I have a data sample I've collected, recording the saliva production of 130 individuals. I've split the 130 individuals into age groups with 10 year intervals (18-29, 30-39 and so on).
Now, I need to make a table - I've solved most of my problem with the table command - with c(freq mean Mean sd Mean min Mean max Mean) but I cant seem to wrap my head around how to display 95% CI as well. I've tried using the ci command instead, which kinda produces what I'm looking for, but instead of putting out one presentable table, it puts out a table for each age group AND for each gender within each age group. Is there any way to combine the two - or should I look at an entirely different command?
I've added my sample and thank you in advance.
I have a (for many of you) pretty simple problem. It feels like I've tried 100 different things to make it work like I want it to, but I haven't quite nailed the solution as of yet.
I have a data sample I've collected, recording the saliva production of 130 individuals. I've split the 130 individuals into age groups with 10 year intervals (18-29, 30-39 and so on).
Now, I need to make a table - I've solved most of my problem with the table command - with c(freq mean Mean sd Mean min Mean max Mean) but I cant seem to wrap my head around how to display 95% CI as well. I've tried using the ci command instead, which kinda produces what I'm looking for, but instead of putting out one presentable table, it puts out a table for each age group AND for each gender within each age group. Is there any way to combine the two - or should I look at an entirely different command?
I've added my sample and thank you in advance.
No Mean age
1 0.574 40-49
2 0.949 30-39
3 0.596 50-59
4 0.434 30-39
5 0.629 60-69
6 1.993 40-49
7 1.044 40-49
8 0.772 50-59
9 0.449 50-59
10 1.129 40-49
11 0.497 30-39
12 0.166 30-39
13 1.041 18-29
14 1.050 30-39
15 0.717 30-39
16 0.468 18-29
17 0.413 40-49
18 0.523 40-49
19 0.645 18-29
20 0.660 30-39
21 0.491 30-39
22 1.519 18-29
23 0.444 30-39
24 2.390 30-39
25 0.988 18-29
26 1.489 30-39
27 0.213 30-39
28 0.713 60-69
29 0.723 40-49
30 1.029 40-49
31 1.169 30-39
32 1.337 30-39
33 0.791 30-39
34 0.607 30-39
35 1.272 50-59
36 0.989 60-69
37 0.692 50-59
38 0.471 40-49
39 0.787 30-39
40 0.579 18-29
41 0.714 18-29
42 0.691 70-79
43 1.024 70-79
44 0.593 50-59
45 0.646 40-49
46 0.759 18-29
47 0.198 70-79
48 1.043 30-39
49 1.156 18-29
50 1.062 60-69
51 1.114 30-39
52 0.337 60-69
53 0.205 40-49
54 0.331 30-39
55 0.234 50-59
56 0.283 40-49
57 0.579 30-39
58 0.291 40-49
59 0.312 18-29
60 0.330 18-29
61 0.492 50-59
62 1.127 50-59
63 0.165 18-29
64 0.677 18-29
65 0.721 40-49
66 1.445 40-49
67 0.629 40-49
68 0.231 70-79
69 0.871 50-59
70 0.481 60-69
71 1.207 70-79
72 1.154 50-59
73 0.642 70-79
74 0.959 70-79
75 1.889 40-49
76 1.302 40-49
77 0.407 50-59
78 0.548 70-79
79 1.654 70-79
80 1.026 50-59
81 0.846 60-69
82 0.547 60-69
83 0.581 40-49
84 0.708 18-29
85 0.792 18-29
86 1.092 50-59
87 1.133 60-69
88 0.590 50-59
89 0.519 60-69
90 1.045 60-69
91 0.529 60-69
92 1.389 30-39
93 0.968 50-59
94 0.857 60-69
95 0.633 60-69
96 0.390 50-59
97 0.716 60-69
98 0.456 60-69
99 0.804 40-49
100 0.493 60-69
101 0.420 60-69
102 0.679 60-69
103 0.615 50-59
104 1.025 50-59
105 0.726 40-49
106 0.970 40-49
107 0.739 40-49
108 0.847 70-79
109 2.272 18-29
110 1.008 60-69
111 0.408 70-79
112 2.442 18-29
113 1.780 60-69
114 0.620 18-29
115 1.330 18-29
116 0.440 18-29
117 1.102 50-59
118 0.720 40-49
119 0.549 30-39
120 0.365 30-39
121 0.986 70-79
122 0.460 70-79
123 0.432 70-79
124 0.492 70-79
125 1.460 70-79
126 0.565 70-79
127 1.081 70-79
128 0.387 70-79
129 0.484 70-79
130 1.552 70-79
1 0.574 40-49
2 0.949 30-39
3 0.596 50-59
4 0.434 30-39
5 0.629 60-69
6 1.993 40-49
7 1.044 40-49
8 0.772 50-59
9 0.449 50-59
10 1.129 40-49
11 0.497 30-39
12 0.166 30-39
13 1.041 18-29
14 1.050 30-39
15 0.717 30-39
16 0.468 18-29
17 0.413 40-49
18 0.523 40-49
19 0.645 18-29
20 0.660 30-39
21 0.491 30-39
22 1.519 18-29
23 0.444 30-39
24 2.390 30-39
25 0.988 18-29
26 1.489 30-39
27 0.213 30-39
28 0.713 60-69
29 0.723 40-49
30 1.029 40-49
31 1.169 30-39
32 1.337 30-39
33 0.791 30-39
34 0.607 30-39
35 1.272 50-59
36 0.989 60-69
37 0.692 50-59
38 0.471 40-49
39 0.787 30-39
40 0.579 18-29
41 0.714 18-29
42 0.691 70-79
43 1.024 70-79
44 0.593 50-59
45 0.646 40-49
46 0.759 18-29
47 0.198 70-79
48 1.043 30-39
49 1.156 18-29
50 1.062 60-69
51 1.114 30-39
52 0.337 60-69
53 0.205 40-49
54 0.331 30-39
55 0.234 50-59
56 0.283 40-49
57 0.579 30-39
58 0.291 40-49
59 0.312 18-29
60 0.330 18-29
61 0.492 50-59
62 1.127 50-59
63 0.165 18-29
64 0.677 18-29
65 0.721 40-49
66 1.445 40-49
67 0.629 40-49
68 0.231 70-79
69 0.871 50-59
70 0.481 60-69
71 1.207 70-79
72 1.154 50-59
73 0.642 70-79
74 0.959 70-79
75 1.889 40-49
76 1.302 40-49
77 0.407 50-59
78 0.548 70-79
79 1.654 70-79
80 1.026 50-59
81 0.846 60-69
82 0.547 60-69
83 0.581 40-49
84 0.708 18-29
85 0.792 18-29
86 1.092 50-59
87 1.133 60-69
88 0.590 50-59
89 0.519 60-69
90 1.045 60-69
91 0.529 60-69
92 1.389 30-39
93 0.968 50-59
94 0.857 60-69
95 0.633 60-69
96 0.390 50-59
97 0.716 60-69
98 0.456 60-69
99 0.804 40-49
100 0.493 60-69
101 0.420 60-69
102 0.679 60-69
103 0.615 50-59
104 1.025 50-59
105 0.726 40-49
106 0.970 40-49
107 0.739 40-49
108 0.847 70-79
109 2.272 18-29
110 1.008 60-69
111 0.408 70-79
112 2.442 18-29
113 1.780 60-69
114 0.620 18-29
115 1.330 18-29
116 0.440 18-29
117 1.102 50-59
118 0.720 40-49
119 0.549 30-39
120 0.365 30-39
121 0.986 70-79
122 0.460 70-79
123 0.432 70-79
124 0.492 70-79
125 1.460 70-79
126 0.565 70-79
127 1.081 70-79
128 0.387 70-79
129 0.484 70-79
130 1.552 70-79
Comment