Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • SEM CFA with higher-order factor not converging

    Greetings,

    I'm running Stata 15.1 on a Mac OS and am working with cross-sectional survey data. I'm trying to run a CFA of two factors (RR, DISC) with one higher-order factor (GF):

    Code:
    sem (RR-> revrr_favors revrr_tryharder rr_slavery rr_deserve) (DISC->  racineq_discrim disc_blacks nodisc_equalincomes) (GF->RR DISC) if white==1, stand method(adf)
    However, after entering the syntax above, I am unable to get the model to converge (it endlessly iterates). I'm not sure what the issue is, so I would really appreciate some input on how to correct it.

    Here is some sample data:

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input byte(revrr_favors revrr_tryharder) long(rr_slavery rr_deserve)    byte    racineq_discrim    long(disc_blacks    nodisc_equalincomes)    byte    white
    5 5 5 5   0 5 2 1
    4 3 4 3  50 3 3 0
    4 4 4 4  75 5 6 1
    1 3 1 1   9 1 4 1
    4 5 5 3  50 5 4 1
    2 3 4 2  15 3 4 1
    2 4 5 3  70 4 4 1
    5 5 5 5 100 5 6 1
    3 3 4 4  75 3 4 1
    1 1 2 2  48 4 2 1
    5 5 5 5  80 5 6 1
    1 1 1 1  10 2 1 1
    5 5 5 5  85 5 6 1
    5 5 5 5 100 5 7 1
    4 4 5 4  76 5 5 1
    5 4 2 3  55 4 3 1
    1 1 1 1   0 1 1 1
    4 4 4 5  55 5 5 1
    1 2 1 1   0 1 1 1
    3 3 3 3  51 4 4 1
    4 5 4 5  50 4 4 1
    5 5 5 5  90 5 4 0
    1 3 2 2  20 3 5 1
    1 1 1 1   0 2 1 1
    4 5 5 5  56 4 5 1
    2 4 5 4  70 4 6 1
    5 5 5 5 100 5 7 1
    5 5 1 5 100 5 4 1
    3 4 2 3  30 4 5 1
    2 4 3 1  18 2 4 1
    4 2 4 4  95 3 7 1
    3 4 2 3   8 3 2 0
    5 5 5 5  90 5 6 0
    5 5 5 5 100 4 7 1
    2 2 3 2  63 2 2 1
    3 3 3 2  65 3 6 1
    5 5 1 4  80 5 7 1
    4 4 4 4  80 4 5 1
    5 5 5 5  90 4 7 1
    1 1 1 1  25 1 4 1
    1 1 1 1  25 1 1 1
    4 5 5 5  89 4 7 1
    5 5 4 5 100 5 6 1
    2 3 4 5  57 5 7 1
    3 3 1 1   0 3 2 1
    4 4 4 4  79 4 5 1
    5 4 4 5  71 4 3 1
    2 5 2 2   5 2 2 1
    5 5 5 5 100 4 7 1
    1 1 1 1   2 2 1 1
    3 4 3 3  21 3 3 1
    5 5 5 5  60 5 5 1
    4 4 3 3  60 3 3 1
    4 5 4 5  80 4 4 1
    4 4 5 4  71 3 5 1
    2 3 4 3  50 3 5 1
    2 2 3 3  50 3 5 1
    3 4 5 2   0 1 4 1
    3 4 4 3  50 3 4 1
    1 2 4 2  40 3 3 1
    4 4 4 4  64 3 3 1
    1 1 1 1  10 2 2 1
    2 4 5 5  80 5 7 1
    2 5 4 3  51 4 3 1
    5 5 5 5  90 5 7 1
    2 3 4 1   5 3 3 1
    5 5 5 5  87 5 6 1
    4 5 1 5  93 5 5 1
    2 4 4 3  50 3 4 1
    5 5 5 5  90 5 7 1
    5 5 5 5  85 5 6 1
    1 1 1 1  54 3 6 1
    1 1 1 1   8 3 2 1
    3 4 4 4  50 4 4 1
    4 4 4 3  51 3 1 1
    2 2 4 2  25 3 4 0
    4 5 5 5  90 4 7 1
    3 4 4 4  86 4 4 1
    5 4 5 5  82 5 5 1
    2 3 3 3  20 3 3 1
    3 4 4 4  51 4 7 1
    5 4 5 5  80 4 4 1
    1 3 1 2  10 2 4 1
    3 5 5 5 100 5 7 1
    4 3 4 4  60 4 6 1
    4 4 5 4  60 3 5 1
    5 5 5 3 100 5 7 1
    4 4 4 3  60 4 4 1
    5 5 5 3  95 5 5 1
    2 2 4 5  50 5 5 1
    5 5 5 5 100 5 6 1
    3 5 4 5  80 5 2 0
    5 5 5 5  81 5 5 1
    5 5 5 5 100 5 6 1
    1 1 1 1  10 2 3 1
    3 3 4 3  61 3 5 1
    5 5 5 5  95 3 6 1
    2 5 4 4  70 4 5 0
    2 3 3 3  31 4 5 1
    5 5 5 5 100 5 6 1
    end
    label values revrr_favors revrr_favors
    label def revrr_favors 1 "Strongly agree", modify
    label def revrr_favors 2 "Somewhat agree", modify
    label def revrr_favors 3 "Neither agree nor disagree", modify
    label def revrr_favors 4 "Somewhat disagree", modify
    label def revrr_favors 5 "Strongly disagree", modify
    label values revrr_tryharder revrr_tryharder
    label def revrr_tryharder 1 "Strongly agree", modify
    label def revrr_tryharder 2 "Somewhat agree", modify
    label def revrr_tryharder 3 "Neither agree nor disagree", modify
    label def revrr_tryharder 4 "Somewhat disagree", modify
    label def revrr_tryharder 5 "Strongly disagree", modify
    label values rr_slavery rr_slavery
    label def rr_slavery 1 "Strongly disagree", modify
    label def rr_slavery 2 "Somewhat disagree", modify
    label def rr_slavery 3 "Neither agree nor disagree", modify
    label def rr_slavery 4 "Somewhat agree", modify
    label def rr_slavery 5 "Strongly agree", modify
    label values rr_deserve rr_deserve
    label def rr_deserve 1 "Strongly disagree", modify
    label def rr_deserve 2 "Somewhat disagree", modify
    label def rr_deserve 3 "Neither agree nor disagree", modify
    label def rr_deserve 4 "Somewhat agree", modify
    label def rr_deserve 5 "Strongly agree", modify
    label values disc_blacks disc_blacks
    label def disc_blacks 1 "None at all", modify
    label def disc_blacks 2 "Only a little", modify
    label def disc_blacks 3 "Some", modify
    label def disc_blacks 4 "A lot", modify
    label def disc_blacks 5 "A great deal", modify
    label values nodisc_equalincomes nodisc_equalincomes
    label def nodisc_equalincomes 1 "Strongly disagree", modify
    label def nodisc_equalincomes 2 "Disagree", modify
    label def nodisc_equalincomes 3 "Somewhat disagree", modify
    label def nodisc_equalincomes 4 "Neither agree nor disagree", modify
    label def nodisc_equalincomes 5 "Somewhat agree", modify
    label def nodisc_equalincomes 6 "Agree", modify
    label def nodisc_equalincomes 7 "Strongly agree", modify
    Thanks in advance for your help!

  • #2
    You need at least three first-order factors to identify a second-order model. Or, as the link says, you can constrain the loadings of both first-order factors on the second to be 1, but I'm not sure of a theoretical justification for that. Basically, with your current data and your current theoretical framework, there is nothing you can do to estimate a second-order factor model. I know that identification is pretty complex, but the outline of the issue is that you need at least one more piece of information to identify the higher-order factor, or else there is no unique solution to all the parameters. Remember those algebra problems where they give you two equations with two unknowns, and you have to solve for each unknown? I'm probably oversimplifying, but identification in SEM is as if you were given one equation with two unknowns - you can't find a unique solution for both unknowns without one more equation.
    Be aware that it can be very hard to answer a question without sample data. You can use the dataex command for this. Type help dataex at the command line.

    When presenting code or results, please use the code delimiters format them. Use the # button on the formatting toolbar, between the " (double quote) and <> buttons.

    Comment


    • #3
      Hey Weiwen,

      Thanks for the reply. Out of curiosity, I tried splitting one of the first-order factors into two. But I still can't get it to converge:

      Code:
      sem (RR-> revrr_favors revrr_tryharder) (DISC2->rr_slavery rr_deserve) (DISC1->  racineq_discrim disc_blacks nodisc_equalincomes) (GF->RR DISC1 DISC2) if white==1,  method(adf)

      Comment


      • #4
        In fact, I can't even get it to converge if keep the original equation but add another factor:

        Code:
        sem (RR-> revrr_favors revrr_tryharder rr_slavery rr_deserve) (DISC->  racineq_discrim disc_blacks nodisc_equalincomes) (WPA-> wpa_advantages-wpa_easier) (GF->RR DISC WPA) if white==1, stand method(adf)
        Some more sample data with the new variables:

        Code:
        * Example generated by -dataex-. To install: ssc install dataex
        clear
        input byte(revrr_favors revrr_tryharder) long(rr_slavery rr_deserve)    byte    racineq_discrim    long(disc_blacks    nodisc_equalincomes    wpa_advantages    wpa_opensdoors    wpa_easier)    byte    white
        5 5 5 5   0 5 2 6 6 6 1
        4 3 4 3  50 3 3 5 4 4 0
        4 4 4 4  75 5 6 6 6 6 1
        1 3 1 1   9 1 4 1 1 1 1
        4 5 5 3  50 5 4 6 5 4 1
        2 3 4 2  15 3 4 6 5 6 1
        2 4 5 3  70 4 4 6 6 6 1
        5 5 5 5 100 5 6 7 7 7 1
        3 3 4 4  75 3 4 5 5 5 1
        1 1 2 2  48 4 2 4 2 2 1
        5 5 5 5  80 5 6 7 7 7 1
        1 1 1 1  10 2 1 2 1 1 1
        5 5 5 5  85 5 6 7 7 7 1
        5 5 5 5 100 5 7 7 7 7 1
        4 4 5 4  76 5 5 7 6 6 1
        5 4 2 3  55 4 3 3 4 2 1
        1 1 1 1   0 1 1 1 1 1 1
        4 4 4 5  55 5 5 6 7 6 1
        1 2 1 1   0 1 1 1 1 1 1
        3 3 3 3  51 4 4 3 4 4 1
        4 5 4 5  50 4 4 6 4 6 1
        5 5 5 5  90 5 4 7 7 7 0
        1 3 2 2  20 3 5 4 4 4 1
        1 1 1 1   0 2 1 1 1 1 1
        4 5 5 5  56 4 5 6 6 6 1
        2 4 5 4  70 4 6 7 7 7 1
        5 5 5 5 100 5 7 7 7 7 1
        5 5 1 5 100 5 4 7 7 7 1
        3 4 2 3  30 4 5 3 3 3 1
        2 4 3 1  18 2 4 4 2 2 1
        4 2 4 4  95 3 7 5 5 6 1
        3 4 2 3   8 3 2 4 3 3 0
        5 5 5 5  90 5 6 7 7 7 0
        5 5 5 5 100 4 7 7 7 7 1
        2 2 3 2  63 2 2 2 2 2 1
        3 3 3 2  65 3 6 4 5 3 1
        5 5 1 4  80 5 7 7 7 7 1
        4 4 4 4  80 4 5 7 7 7 1
        5 5 5 5  90 4 7 7 7 7 1
        1 1 1 1  25 1 4 2 2 1 1
        1 1 1 1  25 1 1 1 1 1 1
        4 5 5 5  89 4 7 6 6 6 1
        5 5 4 5 100 5 6 7 6 7 1
        2 3 4 5  57 5 7 5 5 6 1
        3 3 1 1   0 3 2 4 4 4 1
        4 4 4 4  79 4 5 6 6 6 1
        5 4 4 5  71 4 3 7 7 7 1
        2 5 2 2   5 2 2 2 1 2 1
        5 5 5 5 100 4 7 6 6 6 1
        1 1 1 1   2 2 1 1 1 1 1
        3 4 3 3  21 3 3 3 3 3 1
        5 5 5 5  60 5 5 6 6 6 1
        4 4 3 3  60 3 3 5 5 5 1
        4 5 4 5  80 4 4 6 5 6 1
        4 4 5 4  71 3 5 5 5 6 1
        2 3 4 3  50 3 5 6 6 4 1
        2 2 3 3  50 3 5 5 5 5 1
        3 4 5 2   0 1 4 1 4 1 1
        3 4 4 3  50 3 4 4 4 3 1
        1 2 4 2  40 3 3 2 2 2 1
        4 4 4 4  64 3 3 5 5 5 1
        1 1 1 1  10 2 2 2 4 4 1
        2 4 5 5  80 5 7 1 1 4 1
        2 5 4 3  51 4 3 7 6 6 1
        5 5 5 5  90 5 7 7 7 7 1
        2 3 4 1   5 3 3 2 2 2 1
        5 5 5 5  87 5 6 7 7 7 1
        4 5 1 5  93 5 5 7 7 7 1
        2 4 4 3  50 3 4 5 5 5 1
        5 5 5 5  90 5 7 7 7 7 1
        5 5 5 5  85 5 6 7 7 7 1
        1 1 1 1  54 3 6 2 3 2 1
        1 1 1 1   8 3 2 3 4 2 1
        3 4 4 4  50 4 4 5 4 5 1
        4 4 4 3  51 3 1 6 6 2 1
        2 2 4 2  25 3 4 2 1 1 0
        4 5 5 5  90 4 7 7 7 6 1
        3 4 4 4  86 4 4 6 5 6 1
        5 4 5 5  82 5 5 7 7 7 1
        2 3 3 3  20 3 3 5 2 5 1
        3 4 4 4  51 4 7 6 6 5 1
        5 4 5 5  80 4 4 6 6 6 1
        1 3 1 2  10 2 4 2 1 1 1
        3 5 5 5 100 5 7 6 6 6 1
        4 3 4 4  60 4 6 6 6 7 1
        4 4 5 4  60 3 5 6 6 6 1
        5 5 5 3 100 5 7 6 7 7 1
        4 4 4 3  60 4 4 5 4 6 1
        5 5 5 3  95 5 5 7 7 7 1
        2 2 4 5  50 5 5 7 7 6 1
        5 5 5 5 100 5 6 7 7 7 1
        3 5 4 5  80 5 2 4 4 5 0
        5 5 5 5  81 5 5 6 6 6 1
        5 5 5 5 100 5 6 7 7 7 1
        1 1 1 1  10 2 3 1 1 1 1
        3 3 4 3  61 3 5 6 5 5 1
        5 5 5 5  95 3 6 7 3 7 1
        2 5 4 4  70 4 5 6 5 5 0
        2 3 3 3  31 4 5 5 4 4 1
        5 5 5 5 100 5 6 7 7 7 1
        end
        label values revrr_favors revrr_favors
        label def revrr_favors 1 "Strongly agree", modify
        label def revrr_favors 2 "Somewhat agree", modify
        label def revrr_favors 3 "Neither agree nor disagree", modify
        label def revrr_favors 4 "Somewhat disagree", modify
        label def revrr_favors 5 "Strongly disagree", modify
        label values revrr_tryharder revrr_tryharder
        label def revrr_tryharder 1 "Strongly agree", modify
        label def revrr_tryharder 2 "Somewhat agree", modify
        label def revrr_tryharder 3 "Neither agree nor disagree", modify
        label def revrr_tryharder 4 "Somewhat disagree", modify
        label def revrr_tryharder 5 "Strongly disagree", modify
        label values rr_slavery rr_slavery
        label def rr_slavery 1 "Strongly disagree", modify
        label def rr_slavery 2 "Somewhat disagree", modify
        label def rr_slavery 3 "Neither agree nor disagree", modify
        label def rr_slavery 4 "Somewhat agree", modify
        label def rr_slavery 5 "Strongly agree", modify
        label values rr_deserve rr_deserve
        label def rr_deserve 1 "Strongly disagree", modify
        label def rr_deserve 2 "Somewhat disagree", modify
        label def rr_deserve 3 "Neither agree nor disagree", modify
        label def rr_deserve 4 "Somewhat agree", modify
        label def rr_deserve 5 "Strongly agree", modify
        label values disc_blacks disc_blacks
        label def disc_blacks 1 "None at all", modify
        label def disc_blacks 2 "Only a little", modify
        label def disc_blacks 3 "Some", modify
        label def disc_blacks 4 "A lot", modify
        label def disc_blacks 5 "A great deal", modify
        label values nodisc_equalincomes nodisc_equalincomes
        label def nodisc_equalincomes 1 "Strongly disagree", modify
        label def nodisc_equalincomes 2 "Disagree", modify
        label def nodisc_equalincomes 3 "Somewhat disagree", modify
        label def nodisc_equalincomes 4 "Neither agree nor disagree", modify
        label def nodisc_equalincomes 5 "Somewhat agree", modify
        label def nodisc_equalincomes 6 "Agree", modify
        label def nodisc_equalincomes 7 "Strongly agree", modify
        label values wpa_advantages wpa_advantages
        label def wpa_advantages 1 "Strongly disagree", modify
        label def wpa_advantages 2 "Disagree", modify
        label def wpa_advantages 3 "Somewhat disagree", modify
        label def wpa_advantages 4 "Neither agree nor disagree", modify
        label def wpa_advantages 5 "Somewhat agree", modify
        label def wpa_advantages 6 "Agree", modify
        label def wpa_advantages 7 "Strongly agree", modify
        label values wpa_opensdoors wpa_opensdoors
        label def wpa_opensdoors 1 "Strongly disagree", modify
        label def wpa_opensdoors 2 "Disagree", modify
        label def wpa_opensdoors 3 "Somewhat disagree", modify
        label def wpa_opensdoors 4 "Neither agree nor disagree", modify
        label def wpa_opensdoors 5 "Somewhat agree", modify
        label def wpa_opensdoors 6 "Agree", modify
        label def wpa_opensdoors 7 "Strongly agree", modify
        label values wpa_easier wpa_easier
        label def wpa_easier 1 "Strongly disagree", modify
        label def wpa_easier 2 "Disagree", modify
        label def wpa_easier 3 "Somewhat disagree", modify
        label def wpa_easier 4 "Neither agree nor disagree", modify
        label def wpa_easier 5 "Somewhat agree", modify
        label def wpa_easier 6 "Agree", modify
        label def wpa_easier 7 "Strongly agree", modify

        Comment


        • #5
          Originally posted by Zach Goldberg View Post
          In fact, I can't even get it to converge if keep the original equation but add another factor:
          Maybe it's because your data support only a single factor.

          .ÿ
          .ÿversionÿ16.1

          .ÿ
          .ÿclearÿ*

          .ÿ
          .ÿquietlyÿinputÿbyte(revrr_favorsÿrevrr_tryharder)ÿlong(rr_slaveryÿrr_deserve)ÿ///
          >ÿÿÿÿÿÿÿÿÿbyteÿracineq_discrimÿlong(disc_blacksÿnodisc_equalincomesÿwpa_advantagesÿ///
          >ÿÿÿÿÿÿÿÿÿwpa_opensdoorsÿwpa_easier)ÿbyteÿwhite

          .ÿ
          .ÿquietlyÿcompress

          .ÿ
          .ÿfactorÿrevrr_favors-wpa_easier
          (obs=100)

          Factorÿanalysis/correlationÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿ=ÿÿÿÿÿÿÿÿ100
          ÿÿÿÿMethod:ÿprincipalÿfactorsÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRetainedÿfactorsÿ=ÿÿÿÿÿÿÿÿÿÿ5
          ÿÿÿÿRotation:ÿ(unrotated)ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿparamsÿ=ÿÿÿÿÿÿÿÿÿ40

          ÿÿÿÿ--------------------------------------------------------------------------
          ÿÿÿÿÿÿÿÿÿFactorÿÿ|ÿÿÿEigenvalueÿÿÿDifferenceÿÿÿÿÿÿÿÿProportionÿÿÿCumulative
          ÿÿÿÿ-------------+------------------------------------------------------------
          ÿÿÿÿÿÿÿÿFactor1ÿÿ|ÿÿÿÿÿÿ7.35078ÿÿÿÿÿÿ7.08557ÿÿÿÿÿÿÿÿÿÿÿÿ0.9582ÿÿÿÿÿÿÿ0.9582
          ÿÿÿÿÿÿÿÿFactor2ÿÿ|ÿÿÿÿÿÿ0.26522ÿÿÿÿÿÿ0.02162ÿÿÿÿÿÿÿÿÿÿÿÿ0.0346ÿÿÿÿÿÿÿ0.9928
          ÿÿÿÿÿÿÿÿFactor3ÿÿ|ÿÿÿÿÿÿ0.24360ÿÿÿÿÿÿ0.18461ÿÿÿÿÿÿÿÿÿÿÿÿ0.0318ÿÿÿÿÿÿÿ1.0245
          ÿÿÿÿÿÿÿÿFactor4ÿÿ|ÿÿÿÿÿÿ0.05899ÿÿÿÿÿÿ0.01710ÿÿÿÿÿÿÿÿÿÿÿÿ0.0077ÿÿÿÿÿÿÿ1.0322
          ÿÿÿÿÿÿÿÿFactor5ÿÿ|ÿÿÿÿÿÿ0.04189ÿÿÿÿÿÿ0.04939ÿÿÿÿÿÿÿÿÿÿÿÿ0.0055ÿÿÿÿÿÿÿ1.0377
          ÿÿÿÿÿÿÿÿFactor6ÿÿ|ÿÿÿÿÿ-0.00750ÿÿÿÿÿÿ0.02847ÿÿÿÿÿÿÿÿÿÿÿ-0.0010ÿÿÿÿÿÿÿ1.0367
          ÿÿÿÿÿÿÿÿFactor7ÿÿ|ÿÿÿÿÿ-0.03598ÿÿÿÿÿÿ0.00217ÿÿÿÿÿÿÿÿÿÿÿ-0.0047ÿÿÿÿÿÿÿ1.0320
          ÿÿÿÿÿÿÿÿFactor8ÿÿ|ÿÿÿÿÿ-0.03815ÿÿÿÿÿÿ0.04899ÿÿÿÿÿÿÿÿÿÿÿ-0.0050ÿÿÿÿÿÿÿ1.0270
          ÿÿÿÿÿÿÿÿFactor9ÿÿ|ÿÿÿÿÿ-0.08714ÿÿÿÿÿÿ0.03297ÿÿÿÿÿÿÿÿÿÿÿ-0.0114ÿÿÿÿÿÿÿ1.0157
          ÿÿÿÿÿÿÿFactor10ÿÿ|ÿÿÿÿÿ-0.12011ÿÿÿÿÿÿÿÿÿÿÿÿ.ÿÿÿÿÿÿÿÿÿÿÿ-0.0157ÿÿÿÿÿÿÿ1.0000
          ÿÿÿÿ--------------------------------------------------------------------------
          ÿÿÿÿLRÿtest:ÿindependentÿvs.ÿsaturated:ÿÿchi2(45)ÿ=ÿ1131.13ÿProb>chi2ÿ=ÿ0.0000

          Factorÿloadingsÿ(patternÿmatrix)ÿandÿuniqueÿvariances

          ÿÿÿÿ-------------------------------------------------------------------------------
          ÿÿÿÿÿÿÿÿVariableÿ|ÿÿFactor1ÿÿÿFactor2ÿÿÿFactor3ÿÿÿFactor4ÿÿÿFactor5ÿ|ÿÿÿUniquenessÿ
          ÿÿÿÿ-------------+--------------------------------------------------+--------------
          ÿÿÿÿrevrr_favorsÿ|ÿÿÿ0.8568ÿÿÿÿ0.2147ÿÿÿ-0.1043ÿÿÿÿ0.0602ÿÿÿ-0.1108ÿ|ÿÿÿÿÿÿ0.1930ÿÿ
          ÿÿÿÿrevrr_tryh~rÿ|ÿÿÿ0.8159ÿÿÿÿ0.2927ÿÿÿ-0.0582ÿÿÿÿ0.0332ÿÿÿÿ0.0325ÿ|ÿÿÿÿÿÿ0.2431ÿÿ
          ÿÿÿÿÿÿrr_slaveryÿ|ÿÿÿ0.7574ÿÿÿÿ0.1200ÿÿÿÿ0.0945ÿÿÿÿ0.0732ÿÿÿÿ0.1172ÿ|ÿÿÿÿÿÿ0.3840ÿÿ
          ÿÿÿÿÿÿrr_deserveÿ|ÿÿÿ0.9182ÿÿÿÿ0.1165ÿÿÿÿ0.0711ÿÿÿ-0.1177ÿÿÿÿ0.0214ÿ|ÿÿÿÿÿÿ0.1239ÿÿ
          ÿÿÿÿracineq_di~mÿ|ÿÿÿ0.8646ÿÿÿ-0.0704ÿÿÿÿ0.2091ÿÿÿÿ0.0245ÿÿÿ-0.0950ÿ|ÿÿÿÿÿÿ0.1942ÿÿ
          ÿÿÿÿÿdisc_blacksÿ|ÿÿÿ0.8505ÿÿÿ-0.0106ÿÿÿÿ0.0124ÿÿÿ-0.1490ÿÿÿ-0.0232ÿ|ÿÿÿÿÿÿ0.2537ÿÿ
          ÿÿÿÿnodisc_equ~sÿ|ÿÿÿ0.7157ÿÿÿ-0.1320ÿÿÿÿ0.3067ÿÿÿÿ0.0618ÿÿÿÿ0.0194ÿ|ÿÿÿÿÿÿ0.3722ÿÿ
          ÿÿÿÿwpa_advant~sÿ|ÿÿÿ0.9232ÿÿÿ-0.1563ÿÿÿ-0.2134ÿÿÿÿ0.0188ÿÿÿÿ0.0513ÿ|ÿÿÿÿÿÿ0.0748ÿÿ
          ÿÿÿÿwpa_opensd~sÿ|ÿÿÿ0.9024ÿÿÿ-0.1914ÿÿÿ-0.1646ÿÿÿÿ0.0737ÿÿÿ-0.0301ÿ|ÿÿÿÿÿÿ0.1155ÿÿ
          ÿÿÿÿÿÿwpa_easierÿ|ÿÿÿ0.9405ÿÿÿ-0.1481ÿÿÿ-0.0693ÿÿÿ-0.0516ÿÿÿÿ0.0297ÿ|ÿÿÿÿÿÿ0.0851ÿÿ
          ÿÿÿÿ-------------------------------------------------------------------------------

          .ÿ
          .ÿquietlyÿpolychoricÿrevrr_favors-wpa_easier

          .ÿtempnameÿRho

          .ÿmatrixÿdefineÿ`Rho'ÿ=ÿr(R)

          .ÿlocalÿNÿ`r(N)'

          .ÿfactormatÿ`Rho',ÿn(`N')
          (obs=100)

          Factorÿanalysis/correlationÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿ=ÿÿÿÿÿÿÿÿ100
          ÿÿÿÿMethod:ÿprincipalÿfactorsÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRetainedÿfactorsÿ=ÿÿÿÿÿÿÿÿÿÿ6
          ÿÿÿÿRotation:ÿ(unrotated)ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿparamsÿ=ÿÿÿÿÿÿÿÿÿ45

          ÿÿÿÿ--------------------------------------------------------------------------
          ÿÿÿÿÿÿÿÿÿFactorÿÿ|ÿÿÿEigenvalueÿÿÿDifferenceÿÿÿÿÿÿÿÿProportionÿÿÿCumulative
          ÿÿÿÿ-------------+------------------------------------------------------------
          ÿÿÿÿÿÿÿÿFactor1ÿÿ|ÿÿÿÿÿÿ7.88681ÿÿÿÿÿÿ7.60124ÿÿÿÿÿÿÿÿÿÿÿÿ0.9451ÿÿÿÿÿÿÿ0.9451
          ÿÿÿÿÿÿÿÿFactor2ÿÿ|ÿÿÿÿÿÿ0.28556ÿÿÿÿÿÿ0.02939ÿÿÿÿÿÿÿÿÿÿÿÿ0.0342ÿÿÿÿÿÿÿ0.9794
          ÿÿÿÿÿÿÿÿFactor3ÿÿ|ÿÿÿÿÿÿ0.25617ÿÿÿÿÿÿ0.17985ÿÿÿÿÿÿÿÿÿÿÿÿ0.0307ÿÿÿÿÿÿÿ1.0101
          ÿÿÿÿÿÿÿÿFactor4ÿÿ|ÿÿÿÿÿÿ0.07632ÿÿÿÿÿÿ0.04343ÿÿÿÿÿÿÿÿÿÿÿÿ0.0091ÿÿÿÿÿÿÿ1.0192
          ÿÿÿÿÿÿÿÿFactor5ÿÿ|ÿÿÿÿÿÿ0.03288ÿÿÿÿÿÿ0.02623ÿÿÿÿÿÿÿÿÿÿÿÿ0.0039ÿÿÿÿÿÿÿ1.0232
          ÿÿÿÿÿÿÿÿFactor6ÿÿ|ÿÿÿÿÿÿ0.00665ÿÿÿÿÿÿ0.02343ÿÿÿÿÿÿÿÿÿÿÿÿ0.0008ÿÿÿÿÿÿÿ1.0240
          ÿÿÿÿÿÿÿÿFactor7ÿÿ|ÿÿÿÿÿ-0.01678ÿÿÿÿÿÿ0.01042ÿÿÿÿÿÿÿÿÿÿÿ-0.0020ÿÿÿÿÿÿÿ1.0219
          ÿÿÿÿÿÿÿÿFactor8ÿÿ|ÿÿÿÿÿ-0.02719ÿÿÿÿÿÿ0.03617ÿÿÿÿÿÿÿÿÿÿÿ-0.0033ÿÿÿÿÿÿÿ1.0187
          ÿÿÿÿÿÿÿÿFactor9ÿÿ|ÿÿÿÿÿ-0.06337ÿÿÿÿÿÿ0.02916ÿÿÿÿÿÿÿÿÿÿÿ-0.0076ÿÿÿÿÿÿÿ1.0111
          ÿÿÿÿÿÿÿFactor10ÿÿ|ÿÿÿÿÿ-0.09253ÿÿÿÿÿÿÿÿÿÿÿÿ.ÿÿÿÿÿÿÿÿÿÿÿ-0.0111ÿÿÿÿÿÿÿ1.0000
          ÿÿÿÿ--------------------------------------------------------------------------
          ÿÿÿÿLRÿtest:ÿindependentÿvs.ÿsaturated:ÿÿchi2(45)ÿ=ÿ1412.41ÿProb>chi2ÿ=ÿ0.0000

          Factorÿloadingsÿ(patternÿmatrix)ÿandÿuniqueÿvariances

          ÿÿÿÿ-----------------------------------------------------------------------------------------
          ÿÿÿÿÿÿÿÿVariableÿ|ÿÿFactor1ÿÿÿFactor2ÿÿÿFactor3ÿÿÿFactor4ÿÿÿFactor5ÿÿÿFactor6ÿ|ÿÿÿUniquenessÿ
          ÿÿÿÿ-------------+------------------------------------------------------------+--------------
          ÿÿÿÿrevrr_favorsÿ|ÿÿÿ0.9067ÿÿÿÿ0.2175ÿÿÿ-0.1074ÿÿÿÿ0.0560ÿÿÿ-0.0904ÿÿÿÿ0.0266ÿ|ÿÿÿÿÿÿ0.1070ÿÿ
          ÿÿÿÿrevrr_tryh~rÿ|ÿÿÿ0.8658ÿÿÿÿ0.3018ÿÿÿ-0.0295ÿÿÿÿ0.0346ÿÿÿÿ0.0077ÿÿÿ-0.0191ÿ|ÿÿÿÿÿÿ0.1568ÿÿ
          ÿÿÿÿÿÿrr_slaveryÿ|ÿÿÿ0.8276ÿÿÿÿ0.1432ÿÿÿÿ0.1295ÿÿÿÿ0.0952ÿÿÿÿ0.0870ÿÿÿ-0.0042ÿ|ÿÿÿÿÿÿ0.2612ÿÿ
          ÿÿÿÿÿÿrr_deserveÿ|ÿÿÿ0.9459ÿÿÿÿ0.1040ÿÿÿÿ0.0781ÿÿÿ-0.1208ÿÿÿÿ0.0272ÿÿÿ-0.0015ÿ|ÿÿÿÿÿÿ0.0730ÿÿ
          ÿÿÿÿracineq_di~mÿ|ÿÿÿ0.8485ÿÿÿ-0.1057ÿÿÿÿ0.1780ÿÿÿ-0.0052ÿÿÿ-0.1011ÿÿÿÿ0.0023ÿ|ÿÿÿÿÿÿ0.2270ÿÿ
          ÿÿÿÿÿdisc_blacksÿ|ÿÿÿ0.8911ÿÿÿ-0.0148ÿÿÿ-0.0149ÿÿÿ-0.1909ÿÿÿÿ0.0357ÿÿÿÿ0.0214ÿ|ÿÿÿÿÿÿ0.1673ÿÿ
          ÿÿÿÿnodisc_equ~sÿ|ÿÿÿ0.7430ÿÿÿ-0.1587ÿÿÿÿ0.3276ÿÿÿÿ0.0612ÿÿÿÿ0.0140ÿÿÿ-0.0021ÿ|ÿÿÿÿÿÿ0.3114ÿÿ
          ÿÿÿÿwpa_advant~sÿ|ÿÿÿ0.9415ÿÿÿ-0.1523ÿÿÿ-0.2212ÿÿÿÿ0.0307ÿÿÿÿ0.0294ÿÿÿ-0.0385ÿ|ÿÿÿÿÿÿ0.0382ÿÿ
          ÿÿÿÿwpa_opensd~sÿ|ÿÿÿ0.9258ÿÿÿ-0.1915ÿÿÿ-0.1583ÿÿÿÿ0.0818ÿÿÿÿ0.0408ÿÿÿÿ0.0499ÿ|ÿÿÿÿÿÿ0.0704ÿÿ
          ÿÿÿÿÿÿwpa_easierÿ|ÿÿÿ0.9622ÿÿÿ-0.1393ÿÿÿ-0.0876ÿÿÿ-0.0216ÿÿÿ-0.0460ÿÿÿ-0.0334ÿ|ÿÿÿÿÿÿ0.0433ÿÿ
          ÿÿÿÿ-----------------------------------------------------------------------------------------

          .ÿ
          .ÿexit

          endÿofÿdo-file


          .

          Code:
          search polychoric
          to download and install that user-written command.

          Comment


          • #6
            That doesn't make sense to me. You should still be able to estimate such a model even if it poorly fits the data (relative to a single factor model).

            Comment


            • #7
              Originally posted by Zach Goldberg View Post
              That doesn't make sense to me. You should still be able to estimate such a model even if it poorly fits the data (relative to a single factor model).
              In my experience, failure to converge is a cardinal symptom of a model that is so badly misspecified that little short of simplification can salvage it.

              You've got basically a single dimension with an interitem correlation coefficient of 0.73 (see output from -alpha-below). Look what happens when I try to fit your model to a dataset that mimics those characteristics.

              .ÿ
              .ÿversionÿ16.1

              .ÿ
              .ÿclearÿ*

              .ÿ
              .ÿsetÿseedÿ`=strreverse("1593709")'

              .ÿ
              .ÿquietlyÿinputÿbyte(revrr_favorsÿrevrr_tryharder)ÿlong(rr_slaveryÿrr_deserve)ÿ///
              >ÿÿÿÿÿÿÿÿÿbyteÿracineq_discrimÿlong(disc_blacksÿnodisc_equalincomesÿwpa_advantagesÿ///
              >ÿÿÿÿÿÿÿÿÿwpa_opensdoorsÿwpa_easier)ÿbyteÿwhite

              .ÿ
              .ÿalphaÿrevrr_favors-wpa_easier,ÿstd

              Testÿscaleÿ=ÿmean(standardizedÿitems)

              Averageÿinteritemÿcorrelation:ÿÿÿÿÿÿ0.7262
              Numberÿofÿitemsÿinÿtheÿscale:ÿÿÿÿÿÿÿÿÿÿÿ10
              Scaleÿreliabilityÿcoefficient:ÿÿÿÿÿÿ0.9637

              .ÿ
              .ÿtempnameÿCorr

              .ÿmatrixÿdefineÿ`Corr'ÿ=ÿJ(10,ÿ10,ÿr(rho))ÿ+ÿI(10)ÿ*ÿ(1ÿ-ÿr(rho))

              .ÿforvaluesÿiÿ=ÿ1/10ÿ{
              ÿÿ2.ÿÿÿÿÿÿÿÿÿlocalÿvarlistÿ`varlist'ÿv`i'
              ÿÿ3.ÿ}

              .ÿquietlyÿdrawnormÿ`varlist',ÿdoubleÿcorr(`Corr')ÿn(100)

              .ÿ
              .ÿsemÿ(v1-v4ÿ<-ÿF1)ÿ(v5-v7ÿ<-ÿF2)ÿ(v8-v10ÿ<-ÿF3)ÿ(F1ÿF2ÿF3ÿ<-ÿF4)

              Endogenousÿvariables

              Measurement:ÿÿv1ÿv2ÿv3ÿv4ÿv5ÿv6ÿv7ÿv8ÿv9ÿv10
              Latent:ÿÿÿÿÿÿÿF1ÿF2ÿF3

              Exogenousÿvariables

              Latent:ÿÿÿÿÿÿÿF4

              Fittingÿtargetÿmodel:

              Iterationÿ0:ÿÿÿlogÿlikelihoodÿ=ÿ-1146.8738ÿÿ(notÿconcave)
              Iterationÿ1:ÿÿÿlogÿlikelihoodÿ=ÿÿ-1135.332ÿÿ(notÿconcave)
              Iterationÿ2:ÿÿÿlogÿlikelihoodÿ=ÿ-1107.9235ÿÿ(notÿconcave)
              Iterationÿ3:ÿÿÿlogÿlikelihoodÿ=ÿ-1107.2526ÿÿ(notÿconcave)
              Iterationÿ4:ÿÿÿlogÿlikelihoodÿ=ÿÿ-1106.984ÿÿ(notÿconcave)
              Iterationÿ5:ÿÿÿlogÿlikelihoodÿ=ÿ-1106.8766ÿÿ(notÿconcave)
              Iterationÿ6:ÿÿÿlogÿlikelihoodÿ=ÿ-1106.8551ÿÿ(notÿconcave)
              Iterationÿ7:ÿÿÿlogÿlikelihoodÿ=ÿ-1106.8508ÿÿ(notÿconcave)
              Iterationÿ8:ÿÿÿlogÿlikelihoodÿ=ÿ-1106.8491ÿÿ(notÿconcave)
              Iterationÿ9:ÿÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ10:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ11:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ12:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ13:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ14:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ15:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ16:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ17:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ18:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ19:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ20:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ21:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ22:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ23:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ24:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ25:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ26:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ27:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              Iterationÿ28:ÿÿlogÿlikelihoodÿ=ÿÿ-1106.849ÿÿ(notÿconcave)
              --Break--
              r(1);

              endÿofÿdo-file

              --Break--
              r(1);

              .


              The scale reliability coefficient is so high (0.96) that many researchers would consider that they've just got a bunch of redundant items on a unidimensional scale that they ought to cull. I don't find your troubles at all surprising.

              Comment


              • #8
                Maybe it will help to make sense out of it if you look at it as having too many estimates in your structural model chasing after too few actual unique parameters in the latent structure of the data to make estimates of. There are an infinite number of combinations of factor loadings and variances of the four latent factors that will fit equally well to the one simple covariance in the data. The likelihood (objective function) surface is going to have a huge equi-likelihood plateau that the maximization algorithm will wander around on in circles.

                You can kind of fit your second-order model by handling the three scales separately in the three first-order latent factors, along with fitting covariances between the three. And then using that fitted model’s coefficients as constraints (there’s no other way for your model to find anything unique among the items) in a follow-on “locked-down” model, where you basically exchange your three factor loadings for the covariance terms. I show that below, but I wouldn’t bet the farm on such a jerry-rigged construction.

                .ÿ
                .ÿversionÿ16.1

                .ÿ
                .ÿclearÿ*

                .ÿ
                .ÿquietlyÿinputÿbyte(revrr_favorsÿrevrr_tryharder)ÿlong(rr_slaveryÿrr_deserve)ÿ///
                >ÿÿÿÿÿÿÿÿÿbyteÿracineq_discrimÿlong(disc_blacksÿnodisc_equalincomesÿwpa_advantagesÿ///
                >ÿÿÿÿÿÿÿÿÿwpa_opensdoorsÿwpa_easier)ÿbyteÿwhite

                .ÿquietlyÿcompress

                .ÿ
                .ÿ*
                .ÿ*ÿCovarianceÿfittedÿtoÿthreeÿfirst-orderÿfactors
                .ÿ*
                .ÿsemÿ///
                >ÿÿÿÿÿÿÿÿÿ(revrr_favorsÿrevrr_tryharderÿrr_slaveryÿrr_deserveÿ<-ÿRR)ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ(racineq_discrimÿdisc_blacksÿnodisc_equalincomesÿ<-ÿDISC)ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ(wpa_advantages-wpa_easierÿ<-ÿWPA),ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmethod(adf)ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿnocnsreportÿnodescribeÿnolog

                Fittingÿbaselineÿmodel:

                Iterationÿ0:ÿÿÿdiscrepancyÿ=ÿÿ898.81599ÿÿ
                Iterationÿ1:ÿÿÿdiscrepancyÿ=ÿÿ4.0520075ÿÿ
                Iterationÿ2:ÿÿÿdiscrepancyÿ=ÿÿ4.0520075ÿÿ(backedÿup)

                StructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿ100
                Estimationÿmethodÿÿ=ÿadf
                Discrepancyÿÿÿÿÿÿÿÿ=ÿÿ.57808747

                -------------------------------------------------------------------------------------------
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿCoef.ÿÿÿStd.ÿErr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿConf.ÿInterval]
                --------------------------+----------------------------------------------------------------
                Measurementÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿrevrr_favorsÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ3.656492ÿÿÿ.1137552ÿÿÿÿ32.14ÿÿÿ0.000ÿÿÿÿÿ3.433536ÿÿÿÿ3.879448
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿrevrr_tryharderÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRÿ|ÿÿÿ.8409892ÿÿÿ.0455616ÿÿÿÿ18.46ÿÿÿ0.000ÿÿÿÿÿÿÿ.75169ÿÿÿÿ.9302884
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ4.031682ÿÿÿ.1039593ÿÿÿÿ38.78ÿÿÿ0.000ÿÿÿÿÿ3.827925ÿÿÿÿ4.235438
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿrr_slaveryÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRÿ|ÿÿÿÿ.702112ÿÿÿ.0651877ÿÿÿÿ10.77ÿÿÿ0.000ÿÿÿÿÿ.5743464ÿÿÿÿ.8298775
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ3.952307ÿÿÿ.1181395ÿÿÿÿ33.45ÿÿÿ0.000ÿÿÿÿÿ3.720758ÿÿÿÿ4.183856
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿrr_deserveÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRÿ|ÿÿÿ.9471143ÿÿÿ.0393674ÿÿÿÿ24.06ÿÿÿ0.000ÿÿÿÿÿ.8699556ÿÿÿÿ1.024273
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ3.826854ÿÿÿ.1063248ÿÿÿÿ35.99ÿÿÿ0.000ÿÿÿÿÿ3.618461ÿÿÿÿ4.035247
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿracineq_discrimÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDISCÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ65.68267ÿÿÿ2.610211ÿÿÿÿ25.16ÿÿÿ0.000ÿÿÿÿÿ60.56675ÿÿÿÿ70.79859
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿdisc_blacksÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDISCÿ|ÿÿÿ.0359937ÿÿÿ.0020285ÿÿÿÿ17.74ÿÿÿ0.000ÿÿÿÿÿ.0320179ÿÿÿÿ.0399695
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ3.971693ÿÿÿ.0998203ÿÿÿÿ39.79ÿÿÿ0.000ÿÿÿÿÿ3.776049ÿÿÿÿ4.167338
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿnodisc_equalincomesÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDISCÿ|ÿÿÿ.0457124ÿÿÿ.0038569ÿÿÿÿ11.85ÿÿÿ0.000ÿÿÿÿÿ.0381531ÿÿÿÿ.0532718
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ4.778216ÿÿÿ.1432288ÿÿÿÿ33.36ÿÿÿ0.000ÿÿÿÿÿ4.497493ÿÿÿÿÿ5.05894
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿwpa_advantagesÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWPAÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ5.462988ÿÿÿ.1574787ÿÿÿÿ34.69ÿÿÿ0.000ÿÿÿÿÿ5.154336ÿÿÿÿ5.771641
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿwpa_opensdoorsÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWPAÿ|ÿÿÿ1.065464ÿÿÿ.0279471ÿÿÿÿ38.12ÿÿÿ0.000ÿÿÿÿÿ1.010689ÿÿÿÿ1.120239
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ5.267212ÿÿÿ.1552016ÿÿÿÿ33.94ÿÿÿ0.000ÿÿÿÿÿ4.963023ÿÿÿÿ5.571402
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿwpa_easierÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWPAÿ|ÿÿÿ1.089887ÿÿÿ.0227654ÿÿÿÿ47.87ÿÿÿ0.000ÿÿÿÿÿ1.045268ÿÿÿÿ1.134507
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ5.383029ÿÿÿ.1603893ÿÿÿÿ33.56ÿÿÿ0.000ÿÿÿÿÿ5.068672ÿÿÿÿ5.697386
                --------------------------+----------------------------------------------------------------
                ÿÿÿÿÿÿÿvar(e.revrr_favors)|ÿÿÿ.2909086ÿÿÿ.0588489ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1956879ÿÿÿÿ.4324631
                ÿÿÿÿvar(e.revrr_tryharder)|ÿÿÿ.2047126ÿÿÿ.0570692ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1185356ÿÿÿÿ.3535412
                ÿÿÿÿÿÿÿÿÿvar(e.rr_slavery)|ÿÿÿ1.114005ÿÿÿ.1621271ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.8375428ÿÿÿÿ1.481723
                ÿÿÿÿÿÿÿÿÿvar(e.rr_deserve)|ÿÿÿ.2159436ÿÿÿÿ.063992ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1208087ÿÿÿÿ.3859956
                ÿÿÿÿvar(e.racineq_discrim)|ÿÿÿ121.8929ÿÿÿÿ33.4578ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ71.17647ÿÿÿÿ208.7472
                ÿÿÿÿÿÿÿÿvar(e.disc_blacks)|ÿÿÿ.2729104ÿÿÿ.0285414ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.222331ÿÿÿÿ.3349963
                var(e.nodisc_equalincomes)|ÿÿÿ.9500545ÿÿÿ.1311017ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.7249164ÿÿÿÿ1.245114
                ÿÿÿÿÿvar(e.wpa_advantages)|ÿÿÿ.0796972ÿÿÿ.0332432ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.0351876ÿÿÿÿ.1805077
                ÿÿÿÿÿvar(e.wpa_opensdoors)|ÿÿÿ.1513396ÿÿÿ.0731341ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.0586967ÿÿÿÿ.3902035
                ÿÿÿÿÿÿÿÿÿvar(e.wpa_easier)|ÿÿÿ.1552586ÿÿÿÿ.054459ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.0780703ÿÿÿÿ.3087633
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(RR)|ÿÿÿÿ1.89611ÿÿÿ.1510682ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ1.621982ÿÿÿÿ2.216568
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(DISC)|ÿÿÿ843.0252ÿÿÿ89.73492ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ684.2823ÿÿÿÿ1038.594
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(WPA)|ÿÿÿ3.754846ÿÿÿÿ.398647ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ3.049448ÿÿÿÿ4.623417
                --------------------------+----------------------------------------------------------------
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿcov(RR,DISC)|ÿÿÿ40.10259ÿÿÿ3.281377ÿÿÿÿ12.22ÿÿÿ0.000ÿÿÿÿÿ33.67121ÿÿÿÿ46.53397
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿcov(RR,WPA)|ÿÿÿ2.543052ÿÿÿ.2265508ÿÿÿÿ11.23ÿÿÿ0.000ÿÿÿÿÿ2.099021ÿÿÿÿ2.987083
                ÿÿÿÿÿÿÿÿÿÿÿÿÿcov(DISC,WPA)|ÿÿÿ55.44576ÿÿÿÿ5.47655ÿÿÿÿ10.12ÿÿÿ0.000ÿÿÿÿÿ44.71192ÿÿÿÿÿ66.1796
                -------------------------------------------------------------------------------------------
                Discr.ÿtestÿofÿmodelÿvs.ÿsaturated:ÿchi2(32)ÿÿ=ÿÿÿÿ57.81,ÿProbÿ>ÿchi2ÿ=ÿ0.0034

                .ÿ
                .ÿ*
                .ÿ*ÿForce-fitÿyourÿsecond-orderÿfactorÿmodel
                .ÿ*
                .ÿtempnameÿB

                .ÿmatrixÿdefineÿ`B'ÿ=ÿe(b)

                .ÿlocalÿcolsÿ:ÿcolfullnamesÿ`B'

                .ÿlocalÿcolnumÿ:ÿcolsofÿ`B'

                .ÿlocalÿiÿ1

                .ÿforeachÿcolÿofÿlocalÿcolsÿ{
                ÿÿ2.ÿ
                .ÿÿÿÿÿÿÿÿÿ//ÿFirst-orderÿfactorsÿnowÿbecomeÿendogenousÿ(i.e.,ÿwithÿerrorÿvariance)
                .ÿÿÿÿÿÿÿÿÿifÿinlist("`col'",ÿ"/var(RR)",ÿ"/var(DISC)",ÿ"/var(WPA)")ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlocalÿcolÿ:ÿsubinstrÿlocalÿcolÿ"/var("ÿ"/var(e."
                ÿÿ3.ÿ
                .ÿÿÿÿÿÿÿÿÿ//ÿRemoveÿcovarianceÿtermsÿbetweenÿlatentÿfactors
                .ÿÿÿÿÿÿÿÿÿifÿ(`colnum'ÿ-ÿ3)ÿ<ÿ`i'ÿcontinue,ÿbreak
                ÿÿ4.ÿ
                .ÿÿÿÿÿÿÿÿÿconstraintÿdefineÿ`i'ÿ_b[`col']ÿ=ÿ`B'[1,ÿ`i']
                ÿÿ5.ÿÿÿÿÿÿÿÿÿlocalÿ++i
                ÿÿ6.ÿ}

                .ÿ
                .ÿsemÿ///
                >ÿÿÿÿÿÿÿÿÿ(revrr_favorsÿrevrr_tryharderÿrr_slaveryÿrr_deserveÿ<-ÿRR)ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ(racineq_discrimÿdisc_blacksÿnodisc_equalincomesÿ<-ÿDISC)ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ(wpa_advantages-wpa_easierÿ<-ÿWPA)ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ(RRÿDISCÿWPAÿ<-ÿGF),ÿvariance(GF@1)ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmethod(adf)ÿconstraints(1/`=`i'-1')ÿ///
                >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿnocnsreportÿnodescribeÿnolog

                Fittingÿbaselineÿmodel:

                Iterationÿ0:ÿÿÿdiscrepancyÿ=ÿÿ898.81599ÿÿ
                Iterationÿ1:ÿÿÿdiscrepancyÿ=ÿÿ4.0520075ÿÿ
                Iterationÿ2:ÿÿÿdiscrepancyÿ=ÿÿ4.0520075ÿÿ(backedÿup)

                StructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿ100
                Estimationÿmethodÿÿ=ÿadf
                Discrepancyÿÿÿÿÿÿÿÿ=ÿÿ508.29384

                -------------------------------------------------------------------------------------------
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿCoef.ÿÿÿStd.ÿErr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿConf.ÿInterval]
                --------------------------+----------------------------------------------------------------
                Structuralÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿRRÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿGFÿ|ÿÿÿ.7804523ÿÿÿ.0257447ÿÿÿÿ30.32ÿÿÿ0.000ÿÿÿÿÿ.7299936ÿÿÿÿÿ.830911
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿDISCÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿGFÿ|ÿÿÿ14.12616ÿÿÿ.4786076ÿÿÿÿ29.52ÿÿÿ0.000ÿÿÿÿÿÿ13.1881ÿÿÿÿ15.06421
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿWPAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿGFÿ|ÿÿÿ1.248172ÿÿÿÿ.040204ÿÿÿÿ31.05ÿÿÿ0.000ÿÿÿÿÿ1.169373ÿÿÿÿÿ1.32697
                --------------------------+----------------------------------------------------------------
                Measurementÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿrevrr_favorsÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ3.656492ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿrevrr_tryharderÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRÿ|ÿÿÿ.8409892ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ4.031682ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿrr_slaveryÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRÿ|ÿÿÿÿ.702112ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ3.952307ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿrr_deserveÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRÿ|ÿÿÿ.9471143ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ3.826854ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿracineq_discrimÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDISCÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ65.68267ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿdisc_blacksÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDISCÿ|ÿÿÿ.0359937ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ3.971693ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿnodisc_equalincomesÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDISCÿ|ÿÿÿ.0457124ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ4.778216ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿwpa_advantagesÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWPAÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ5.462988ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿwpa_opensdoorsÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWPAÿ|ÿÿÿ1.065464ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ5.267212ÿÿ(constrained)
                ÿÿ------------------------+----------------------------------------------------------------
                ÿÿwpa_easierÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWPAÿ|ÿÿÿ1.089887ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_consÿ|ÿÿÿ5.383029ÿÿ(constrained)
                --------------------------+----------------------------------------------------------------
                ÿÿÿÿÿÿÿvar(e.revrr_favors)|ÿÿÿ.2909086ÿÿ(constrained)
                ÿÿÿÿvar(e.revrr_tryharder)|ÿÿÿ.2047126ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿvar(e.rr_slavery)|ÿÿÿ1.114005ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿvar(e.rr_deserve)|ÿÿÿ.2159436ÿÿ(constrained)
                ÿÿÿÿvar(e.racineq_discrim)|ÿÿÿ121.8929ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿvar(e.disc_blacks)|ÿÿÿ.2729104ÿÿ(constrained)
                var(e.nodisc_equalincomes)|ÿÿÿ.9500545ÿÿ(constrained)
                ÿÿÿÿÿvar(e.wpa_advantages)|ÿÿÿ.0796972ÿÿ(constrained)
                ÿÿÿÿÿvar(e.wpa_opensdoors)|ÿÿÿ.1513396ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿvar(e.wpa_easier)|ÿÿÿ.1552586ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(e.RR)|ÿÿÿÿ1.89611ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(e.DISC)|ÿÿÿ843.0252ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(e.WPA)|ÿÿÿ3.754846ÿÿ(constrained)
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(GF)|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
                -------------------------------------------------------------------------------------------
                Discr.ÿtestÿofÿmodelÿvs.ÿsaturated:ÿchi2(62)ÿÿ=ÿ50829.38,ÿProbÿ>ÿchi2ÿ=ÿ0.0000

                .ÿ
                .ÿexit

                endÿofÿdo-file


                .

                Comment

                Working...
                X