Hello,
I am looking for the code to solve for t(p):
e^t + t = p
for values p=1 and p = 4.
Thanks in advance!
I am looking for the code to solve for t(p):
e^t + t = p
for values p=1 and p = 4.
Thanks in advance!
et + t = 1
et + t = 4
et + t = 1
et + t = 4
. clear* . . scalar t = 1 . scalar y = exp(t) + t - 4 . . while abs(y) > 1e-6 { 2. scalar dydt = exp(t) + 1 3. scalar t = t - y/dydt 4. scalar y = exp(t) + t - 4 5. display t, y 6. } 1.0757657 .0080029 1.0737305 6.069e-06 1.0737289 3.495e-12
. set obs 1 number of observations (_N) was 0, now 1 . generate p = 4 . generate e = exp(1) . nl (p = e^{t} + {t}) (obs = 1) p has zero variance r(498);
. set obs 2 number of observations (_N) was 0, now 2 . generate p = 3.995 + .010*(_n==2) . generate e = exp(1) . nl (p = e^{t} + {t}) (obs = 2) Iteration 0: residual SS = 7.815957 Iteration 1: residual SS = .1346935 Iteration 2: residual SS = .0001234 Iteration 3: residual SS = .00005 Iteration 4: residual SS = .00005 Source | SS df MS -------------+---------------------------------- Number of obs = 2 Model | 0 0 . R-squared = 0.0000 Residual | .00005 1 .000050002 Adj R-squared = 0.0000 -------------+---------------------------------- Root MSE = .0070712 Total | .00005 1 .000050002 Res. dev. = -15.51742 ------------------------------------------------------------------------------ p | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- /t | 1.073729 .0012735 843.13 0.001 1.057548 1.08991 ------------------------------------------------------------------------------ Parameter t taken as constant term in model & ANOVA table
clear all mata: void myeval(todo, t, y, g, H) { y = - ( exp(t) + t - 4)^2 } S = optimize_init() optimize_init_evaluator(S, &myeval()) optimize_init_params(S, 0) x = optimize(S) x end
. clear all . mata: ------------------------------------------------- mata (type end to exit) ----------------------- : void myeval(todo, t, y, g, H) > { > y = - ( exp(t) + t - 4)^2 > } note: argument todo unused note: argument g unused note: argument H unused : S = optimize_init() : optimize_init_evaluator(S, &myeval()) : optimize_init_params(S, 0) : x = optimize(S) Iteration 0: f(p) = -9 Iteration 1: f(p) = -3.9270875 Iteration 2: f(p) = -.00854249 Iteration 3: f(p) = -.00038131 Iteration 4: f(p) = -1.687e-06 Iteration 5: f(p) = -1.550e-09 Iteration 6: f(p) = -2.843e-11 : x 1.07372758 : end ------------------------------------------------------------------------------------------------- .
Comment