Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Estimating an ARMA(p,q) with a trend

    Dear all,

    I want to estimate a general stationary and invertible ARMA(p,q) model with a time trend (deterministic trend)

    Is that possible.

    The ARIMA function does not allow for that.


    Best

  • #2
    The -arima- command does allow for what you want. The syntax diagram is

    arima depvar [indepvars], ar(numlist) ma(numlist)

    Generate your trend variable, and put it in the place of the [indepvars].

    Like this:

    Code:
    . webuse wpi1, clear
    
    . arima D.wpi t, ar(1) ma(1) nolog
    
    ARIMA regression
    
    Sample:  1960q2 - 1990q4                        Number of obs     =        123
                                                    Wald chi2(3)      =     315.17
    Log likelihood = -133.9807                      Prob > chi2       =     0.0000
    
    ------------------------------------------------------------------------------
                 |                 OPG
           D.wpi |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    wpi          |
               t |   .0110271   .0116397     0.95   0.343    -.0117863    .0338405
           _cons |   .0553015   1.123903     0.05   0.961    -2.147507     2.25811
    -------------+----------------------------------------------------------------
    ARMA         |
              ar |
             L1. |   .8416682   .0638227    13.19   0.000     .7165781    .9667584
                 |
              ma |
             L1. |  -.3917285   .1110694    -3.53   0.000    -.6094206   -.1740364
    -------------+----------------------------------------------------------------
          /sigma |   .7174407   .0357831    20.05   0.000     .6473071    .7875743
    ------------------------------------------------------------------------------
    Note: The test of the variance against zero is one sided, and the two-sided
          confidence interval is truncated at zero.
    
    .

    Comment


    • #3
      Many thanks!

      Comment

      Working...
      X