Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Problems with running fuzzy RD

    Dear stata users:
    I have two questions related to running fuzzy rd in stata and hope someone can help.
    1. Is it possible to do pooled subgroup analysis with the command rdrobust (instead of running one regression for each gender for example)?
    2. I am having difficulties getting the same fuzzy rd estimates with rdrobust and ivregress. Here is the code and output (with stata 14). Maybe I am missing something obvious here.
    Z is the running variable in terms of GPA
    ac_num is the number of college a student got accepted to.

    Code:

    gen above =(z>0)
    gen uw=1/2*(abs(z)<=1) //uniform weight
    gen zabove=z*above

    rdrobust ac_num z, fuzzy(treated) h(0.208) kernel(uniform)
    ivreg2 ac_num (treated=above) z zabove [pw=uw] if z>=-0.208 & z<=0.208



    Output:
    Code:
    . rdrobust ac_num z, fuzzy(treated) h(0.208) kernel(uniform)
    
    Fuzzy RD estimates using local polynomial regression.
     
          Cutoff c = 0 | Left of c  Right of c            Number of obs =     115413
    -------------------+----------------------            BW type       =     Manual
         Number of obs |     68603       46810            Kernel        =    Uniform
    Eff. Number of obs |     11247       13008            VCE method    =         NN
        Order est. (p) |         1           1
        Order bias (q) |         2           2
           BW est. (h) |     0.208       0.208
           BW bias (b) |     0.208       0.208
             rho (h/b) |     1.000       1.000
     
    First-stage estimates. Outcome: treated. Running variable: z.
    --------------------------------------------------------------------------------
                Method |   Coef.    Std. Err.    z     P>|z|    [95% Conf. Interval]
    -------------------+------------------------------------------------------------
          Conventional |  .12829     .03517   3.6477   0.000     .05936       .19723
                Robust |     -          -     2.3896   0.017    .023406      .236954
    --------------------------------------------------------------------------------
     
    Treatment effect estimates. Outcome: ac_num. Running variable: z. Treatment Status: treated.
    --------------------------------------------------------------------------------
                Method |   Coef.    Std. Err.    z     P>|z|    [95% Conf. Interval]
    -------------------+------------------------------------------------------------
          Conventional |  .06976      .1392   0.5012   0.616   -.203061      .342579
                Robust |     -          -     0.1367   0.891     -.4409      .507025
    --------------------------------------------------------------------------------
    
    
    . ivreg2 ac_num (treated=above) z zabove [pw=uw] if z>=-0.208 & z<=0.208
    (sum of wgt is     1.2128e+04)
     
    IV (2SLS) estimation
    --------------------
     
    Estimates efficient for homoskedasticity only
    Statistics robust to heteroskedasticity
     
                                                          Number of obs =    24255
                                                          F(  3, 24251) =   115.04
                                                          Prob > F      =   0.0000
    Total (centered) SS     =  11836.76809                Centered R2   =  -0.0999
    Total (uncentered) SS   =        14482                Uncentered R2 =   0.1010
    Residual SS             =  13019.64892                Root MSE      =    .7327
     
    ------------------------------------------------------------------------------
                 |               Robust
          ac_num |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
         treated |  -.1120709   .1809334    -0.62   0.536    -.4666938     .242552
               z |   .8990076   .3405309     2.64   0.008     .2315793    1.566436
          zabove |   .1783963   .2341688     0.76   0.446     -.280566    .6373587
           _cons |   .3866149   .0952684     4.06   0.000     .1998921    .5733376
    ------------------------------------------------------------------------------
    Underidentification test (Kleibergen-Paap rk LM statistic):              6.887
                                                       Chi-sq(1) P-val =    0.0087
    ------------------------------------------------------------------------------
    Weak identification test (Cragg-Donald Wald F statistic):                8.053
                             (Kleibergen-Paap rk Wald F statistic):          6.891
    Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                             15% maximal IV size              8.96
                                             20% maximal IV size              6.66
                                             25% maximal IV size              5.53
    Source: Stock-Yogo (2005).  Reproduced by permission.
    NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
    ------------------------------------------------------------------------------
    Hansen J statistic (overidentification test of all instruments):         0.000
                                                     (equation exactly identified)
    ------------------------------------------------------------------------------
    Instrumented:         treated
    Included instruments: z zabove
    Excluded instruments: above
    ------------------------------------------------------------------------------
    Last edited by Vivian Liu; 08 Dec 2020, 14:03.
Working...
X