Hello all,
I´m currently writing a paper about companies CVC activities using Compustat and some other data.
I want to test for an inverted u-shaped influence of CEO tenure on CVC activities.
When I now run my regression, the Wald Chi2 Statistic is not reported. This only happens when including the squared term of CEO tenure, without it the Wald Chi2 statistic gets reported.
My supervisor said I have 3 options:
1. I just don´t mention the statistic at all. If I go with this option, is there something else I can report in order to show that the model is significant?
2. I mention the Wald Chi2 statistic. Then I have to come up with an explanation on why there is no output in this particular regression but in all the others. What can be the reason for this?
3. I need to find another way to compute the statistic manually for this specific regression. Is there any?
I´m currently writing a paper about companies CVC activities using Compustat and some other data.
I want to test for an inverted u-shaped influence of CEO tenure on CVC activities.
When I now run my regression, the Wald Chi2 Statistic is not reported. This only happens when including the squared term of CEO tenure, without it the Wald Chi2 statistic gets reported.
Code:
. xtnbreg c_cvc_deal ceo_tenure_l1 ceoage_l1 ceo_gen_l1 ln_firm_size_l1_w rdi_l1_w roa_l1_w i.fyear if mysample1==1, fe note: 3 groups (3 obs) dropped because of only one obs per group note: 119 groups (1568 obs) dropped because of all zero outcomes Iteration 0: log likelihood = -349.00901 Iteration 1: log likelihood = -333.84992 Iteration 2: log likelihood = -331.12362 Iteration 3: log likelihood = -330.55602 Iteration 4: log likelihood = -330.44181 Iteration 5: log likelihood = -330.42608 Iteration 6: log likelihood = -330.42449 Iteration 7: log likelihood = -330.42416 Iteration 8: log likelihood = -330.42408 Iteration 9: log likelihood = -330.42406 Conditional FE negative binomial regression Number of obs = 409 Group variable: gvkey Number of groups = 27 Obs per group: min = 6 avg = 15.1 max = 17 Wald chi2(22) = 84.46 Log likelihood = -330.42406 Prob > chi2 = 0.0000 ----------------------------------------------------------------------------------- c_cvc_deal | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- ceo_tenure_l1 | .0697204 .0203694 3.42 0.001 .0297971 .1096437 ceoage_l1 | -.0117564 .0148496 -0.79 0.429 -.040861 .0173483 ceo_gen_l1 | -17.93889 6690.06 -0.00 0.998 -13130.22 13094.34 ln_firm_size_l1_w | .7518241 .2157166 3.49 0.000 .3290274 1.174621 rdi_l1_w | -.1024028 2.181632 -0.05 0.963 -4.378324 4.173518 roa_l1_w | 1.140307 1.021765 1.12 0.264 -.8623166 3.14293 | fyear | 2003 | -.0959469 3092.255 -0.00 1.000 -6060.803 6060.612 2004 | .0124372 3202.991 0.00 1.000 -6277.735 6277.76 2005 | -.1220866 3267.806 -0.00 1.000 -6404.904 6404.66 2006 | -.1159723 3191.335 -0.00 1.000 -6255.018 6254.786 2007 | 19.53205 2350.518 0.01 0.993 -4587.399 4626.464 2008 | 19.3599 2350.518 0.01 0.993 -4587.572 4626.291 2009 | 18.77836 2350.518 0.01 0.994 -4588.153 4625.71 2010 | 18.91742 2350.518 0.01 0.994 -4588.014 4625.849 2011 | 19.0153 2350.518 0.01 0.994 -4587.916 4625.947 2012 | 18.9587 2350.518 0.01 0.994 -4587.973 4625.89 2013 | 18.49565 2350.518 0.01 0.994 -4588.436 4625.427 2014 | 18.92893 2350.518 0.01 0.994 -4588.003 4625.86 2015 | 19.18668 2350.518 0.01 0.993 -4587.745 4626.118 2016 | 18.91033 2350.518 0.01 0.994 -4588.021 4625.842 2017 | 19.03373 2350.518 0.01 0.994 -4587.898 4625.965 2018 | 19.53097 2350.518 0.01 0.993 -4587.4 4626.462 | _cons | -16.90134 2350.522 -0.01 0.994 -4623.84 4590.037 ----------------------------------------------------------------------------------- . xtnbreg c_cvc_deal ceo_tenure_l1 ceo_tenure_sq_l1 ceoage_l1 ceo_gen_l1 ln_firm_size_l1_w rdi_l1_w roa_l1_w i.fyear if mysample1==1, fe note: 3 groups (3 obs) dropped because of only one obs per group note: 119 groups (1568 obs) dropped because of all zero outcomes Iteration 0: log likelihood = -345.48588 Iteration 1: log likelihood = -331.27649 Iteration 2: log likelihood = -325.80395 Iteration 3: log likelihood = -324.72132 Iteration 4: log likelihood = -324.43138 Iteration 5: log likelihood = -324.3516 Iteration 6: log likelihood = -324.32864 Iteration 7: log likelihood = -324.32282 Iteration 8: log likelihood = -324.32156 Iteration 9: log likelihood = -324.32128 Iteration 10: log likelihood = -324.32121 Iteration 11: log likelihood = -324.32119 Conditional FE negative binomial regression Number of obs = 409 Group variable: gvkey Number of groups = 27 Obs per group: min = 6 avg = 15.1 max = 17 Wald chi2(22) = . Log likelihood = -324.32119 Prob > chi2 = . ----------------------------------------------------------------------------------- c_cvc_deal | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- ceo_tenure_l1 | .2106574 .0465719 4.52 0.000 .1193781 .3019367 ceo_tenure_sq_l1 | -.010805 .0032116 -3.36 0.001 -.0170996 -.0045104 ceoage_l1 | -.0139913 .0146007 -0.96 0.338 -.0426081 .0146254 ceo_gen_l1 | -18.99538 10823.96 -0.00 0.999 -21233.57 21195.58 ln_firm_size_l1_w | .871011 .2095682 4.16 0.000 .4602649 1.281757 rdi_l1_w | -.7506713 2.122157 -0.35 0.724 -4.910023 3.40868 roa_l1_w | 1.25552 1.018909 1.23 0.218 -.7415045 3.252544 | fyear | 2003 | -.3496922 5236.553 -0.00 1.000 -10263.8 10263.1 2004 | -.3321408 5379.453 -0.00 1.000 -10543.87 10543.2 2005 | -.4833295 5414.189 -0.00 1.000 -10612.1 10611.13 2006 | -.4962658 5246.153 -0.00 1.000 -10282.77 10281.77 2007 | 20.24154 3720.51 0.01 0.996 -7271.823 7312.307 2008 | 20.08695 3720.51 0.01 0.996 -7271.978 7312.152 2009 | 19.51208 3720.51 0.01 0.996 -7272.553 7311.577 2010 | 19.62558 3720.51 0.01 0.996 -7272.439 7311.691 2011 | 19.70619 3720.51 0.01 0.996 -7272.359 7311.771 2012 | 19.71911 3720.51 0.01 0.996 -7272.346 7311.784 2013 | 19.30338 3720.51 0.01 0.996 -7272.762 7311.368 2014 | 19.76745 3720.51 0.01 0.996 -7272.298 7311.832 2015 | 19.98728 3720.51 0.01 0.996 -7272.078 7312.052 2016 | 19.68505 3720.51 0.01 0.996 -7272.38 7311.75 2017 | 19.77708 3720.51 0.01 0.996 -7272.288 7311.842 2018 | 20.21707 3720.51 0.01 0.996 -7271.848 7312.282 | _cons | -7.976564 3746.677 -0.00 0.998 -7351.328 7335.375 ----------------------------------------------------------------------------------- . end of do-file
1. I just don´t mention the statistic at all. If I go with this option, is there something else I can report in order to show that the model is significant?
2. I mention the Wald Chi2 statistic. Then I have to come up with an explanation on why there is no output in this particular regression but in all the others. What can be the reason for this?
3. I need to find another way to compute the statistic manually for this specific regression. Is there any?
Comment