Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Combining multiple variables

    Hello!

    I just started learning Stata and I am using a consensus data set and trying to combine a bunch of different variables to make one "Happy People" vs "Unhappy People" variable and then see which group is more active in Political Rallys. The variables I want to use are:

    p_psych 1 (Self- Described Anxious rated 1 - 5)
    p_mental (Mental Health rated 1 - 5)
    p_life_ideal (In most ways my life is ideal rated 1 - 5)
    p_life_sat (I am satisfied with my life rated 1 - 5)

    If there's a way to combine these I would love to hear your thoughts! I have no idea what I'm doing so anything would help!

    Thank you!

  • #2
    I would look at
    Code:
    egen p_combined = group(p_psych p_mental p_life_ideal p_life_sat)
    or help egen
    but maybe there are more advanced options out there

    Comment


    • #3
      Maybe something like one or the other of the following. Begin at the "Begin here" comment. You'd use the predictions (factor scores) in further exploration of political rally participation.

      .ÿ
      .ÿversionÿ16.1

      .ÿ
      .ÿclearÿ*

      .ÿ
      .ÿsetÿseedÿ`=strreverse("1583987")'

      .ÿ
      .ÿtempnameÿCorr

      .ÿmatrixÿdefineÿ`Corr'ÿ=ÿJ(4,ÿ4,ÿ0.5)ÿ+ÿI(4)ÿ*ÿ0.5

      .ÿquietlyÿdrawnormÿp_psychÿp_mentalÿp_life_idealÿp_life_sat,ÿ///
      >ÿÿÿÿÿÿÿÿÿdoubleÿcorr(`Corr')ÿn(250)

      .ÿquietlyÿreplaceÿp_psychÿ=ÿ-p_psych

      .ÿ
      .ÿtempvarÿtmpvar0

      .ÿforeachÿvarÿofÿvarlistÿp_*ÿ{
      ÿÿ2.ÿÿÿÿÿÿÿÿÿegenÿbyteÿ`tmpvar0'ÿ=ÿcut(`var'),ÿgroup(5)
      ÿÿ3.ÿÿÿÿÿÿÿÿÿquietlyÿreplaceÿ`var'ÿ=ÿ`tmpvar0'
      ÿÿ4.ÿÿÿÿÿÿÿÿÿdropÿ`tmpvar0'
      ÿÿ5.ÿ}

      .ÿ
      .ÿ*
      .ÿ*ÿBeginÿhere
      .ÿ*
      .ÿpolychoricÿp_*

      Polychoricÿcorrelationÿmatrix

      ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿp_psychÿÿÿÿÿÿp_mentalÿÿp_life_idealÿÿÿÿp_life_sat
      ÿÿÿÿÿp_psychÿÿÿÿÿÿÿÿÿÿÿÿÿ1
      ÿÿÿÿp_mentalÿÿÿÿ-.53475763ÿÿÿÿÿÿÿÿÿÿÿÿÿ1
      p_life_idealÿÿÿÿ-.59249676ÿÿÿÿÿ.54580398ÿÿÿÿÿÿÿÿÿÿÿÿÿ1
      ÿÿp_life_satÿÿÿÿ-.50420777ÿÿÿÿÿ.52567423ÿÿÿÿÿ.48187567ÿÿÿÿÿÿÿÿÿÿÿÿÿ1

      .ÿtempnameÿRho

      .ÿmatrixÿdefineÿ`Rho'ÿ=ÿr(R)

      .ÿlocalÿNÿ`r(N)'

      .ÿ
      .ÿ//ÿUsingÿexploratoryÿfactorÿanalysis
      .ÿfactormatÿ`Rho',ÿfactors(4)ÿn(`N')ÿforcepsd
      (obs=250)

      Factorÿanalysis/correlationÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿ=ÿÿÿÿÿÿÿÿ250
      ÿÿÿÿMethod:ÿprincipalÿfactorsÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRetainedÿfactorsÿ=ÿÿÿÿÿÿÿÿÿÿ1
      ÿÿÿÿRotation:ÿ(unrotated)ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿparamsÿ=ÿÿÿÿÿÿÿÿÿÿ4

      ÿÿÿÿ--------------------------------------------------------------------------
      ÿÿÿÿÿÿÿÿÿFactorÿÿ|ÿÿÿEigenvalueÿÿÿDifferenceÿÿÿÿÿÿÿÿProportionÿÿÿCumulative
      ÿÿÿÿ-------------+------------------------------------------------------------
      ÿÿÿÿÿÿÿÿFactor1ÿÿ|ÿÿÿÿÿÿ2.01221ÿÿÿÿÿÿ2.06909ÿÿÿÿÿÿÿÿÿÿÿÿ1.2069ÿÿÿÿÿÿÿ1.2069
      ÿÿÿÿÿÿÿÿFactor2ÿÿ|ÿÿÿÿÿ-0.05688ÿÿÿÿÿÿ0.06966ÿÿÿÿÿÿÿÿÿÿÿ-0.0341ÿÿÿÿÿÿÿ1.1728
      ÿÿÿÿÿÿÿÿFactor3ÿÿ|ÿÿÿÿÿ-0.12654ÿÿÿÿÿÿ0.03506ÿÿÿÿÿÿÿÿÿÿÿ-0.0759ÿÿÿÿÿÿÿ1.0969
      ÿÿÿÿÿÿÿÿFactor4ÿÿ|ÿÿÿÿÿ-0.16159ÿÿÿÿÿÿÿÿÿÿÿÿ.ÿÿÿÿÿÿÿÿÿÿÿ-0.0969ÿÿÿÿÿÿÿ1.0000
      ÿÿÿÿ--------------------------------------------------------------------------
      ÿÿÿÿLRÿtest:ÿindependentÿvs.ÿsaturated:ÿÿchi2(6)ÿÿ=ÿÿ332.47ÿProb>chi2ÿ=ÿ0.0000

      Factorÿloadingsÿ(patternÿmatrix)ÿandÿuniqueÿvariances

      ÿÿÿÿ---------------------------------------
      ÿÿÿÿÿÿÿÿVariableÿ|ÿÿFactor1ÿ|ÿÿÿUniquenessÿ
      ÿÿÿÿ-------------+----------+--------------
      ÿÿÿÿÿÿÿÿÿp_psychÿ|ÿÿ-0.7312ÿ|ÿÿÿÿÿÿ0.4654ÿÿ
      ÿÿÿÿÿÿÿÿp_mentalÿ|ÿÿÿ0.7136ÿ|ÿÿÿÿÿÿ0.4908ÿÿ
      ÿÿÿÿp_life_idealÿ|ÿÿÿ0.7267ÿ|ÿÿÿÿÿÿ0.4719ÿÿ
      ÿÿÿÿÿÿp_life_satÿ|ÿÿÿ0.6636ÿ|ÿÿÿÿÿÿ0.5596ÿÿ
      ÿÿÿÿ---------------------------------------

      .ÿpredictÿdoubleÿF*,ÿregressÿ//ÿUseÿtheÿpredictedÿfactorÿvalues

      Scoringÿcoefficientsÿ(methodÿ=ÿregression)

      ÿÿÿÿ------------------------
      ÿÿÿÿÿÿÿÿVariableÿ|ÿÿFactor1ÿ
      ÿÿÿÿ-------------+----------
      ÿÿÿÿÿÿÿÿÿp_psychÿ|ÿ-0.29583ÿ
      ÿÿÿÿÿÿÿÿp_mentalÿ|ÿÿ0.27654ÿ
      ÿÿÿÿp_life_idealÿ|ÿÿ0.28995ÿ
      ÿÿÿÿÿÿp_life_satÿ|ÿÿ0.22937ÿ
      ÿÿÿÿ------------------------

      (variableÿmeansÿassumedÿ0;ÿuseÿmeans()ÿoptionÿofÿfactormatÿforÿnonzeroÿmeans)
      (variableÿstd.ÿdeviationsÿassumedÿ1;ÿuseÿsds()ÿoptionÿofÿfactormatÿtoÿchange)

      .ÿ
      .ÿ//ÿAlternative
      .ÿgsemÿ(p_psychÿp_mentalÿp_life_idealÿp_life_satÿ<-ÿF,ÿoprobit),ÿ///
      >ÿÿÿÿÿÿÿÿÿnocnsreportÿnodvheaderÿnolog

      GeneralizedÿstructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿ250
      Logÿlikelihoodÿ=ÿ-1474.3523

      -------------------------------------------------------------------------------
      ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿCoef.ÿÿÿStd.ÿErr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿConf.ÿInterval]
      --------------+----------------------------------------------------------------
      p_psychÿÿÿÿÿÿÿ|
      ÿÿÿÿÿÿÿÿÿÿÿÿFÿ|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
      --------------+----------------------------------------------------------------
      p_mentalÿÿÿÿÿÿ|
      ÿÿÿÿÿÿÿÿÿÿÿÿFÿ|ÿÿ-.9175627ÿÿÿ.1810519ÿÿÿÿ-5.07ÿÿÿ0.000ÿÿÿÿ-1.272418ÿÿÿ-.5627075
      --------------+----------------------------------------------------------------
      p_life_idealÿÿ|
      ÿÿÿÿÿÿÿÿÿÿÿÿFÿ|ÿÿ-.9694851ÿÿÿ.1820474ÿÿÿÿ-5.33ÿÿÿ0.000ÿÿÿÿ-1.326292ÿÿÿ-.6126788
      --------------+----------------------------------------------------------------
      p_life_satÿÿÿÿ|
      ÿÿÿÿÿÿÿÿÿÿÿÿFÿ|ÿÿ-.7903411ÿÿÿ.1499519ÿÿÿÿ-5.27ÿÿÿ0.000ÿÿÿÿ-1.084241ÿÿÿ-.4964408
      --------------+----------------------------------------------------------------
      /p_psychÿÿÿÿÿÿ|
      ÿÿÿÿÿÿÿÿÿcut1ÿ|ÿÿ-1.282816ÿÿÿ.1570995ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ-1.590726ÿÿÿ-.9749067
      ÿÿÿÿÿÿÿÿÿcut2ÿ|ÿÿ-.3720133ÿÿÿ.1224328ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ-.6119771ÿÿÿ-.1320495
      ÿÿÿÿÿÿÿÿÿcut3ÿ|ÿÿÿ.3779058ÿÿÿ.1227081ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1374023ÿÿÿÿ.6184092
      ÿÿÿÿÿÿÿÿÿcut4ÿ|ÿÿÿ1.280565ÿÿÿ.1559497ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.9749088ÿÿÿÿÿ1.58622
      --------------+----------------------------------------------------------------
      /p_mentalÿÿÿÿÿ|
      ÿÿÿÿÿÿÿÿÿcut1ÿ|ÿÿ-1.223338ÿÿÿ.1447257ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ-1.506995ÿÿÿ-.9396813
      ÿÿÿÿÿÿÿÿÿcut2ÿ|ÿÿ-.3760188ÿÿÿ.1174271ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ-.6061717ÿÿÿ-.1458658
      ÿÿÿÿÿÿÿÿÿcut3ÿ|ÿÿÿ.3643868ÿÿÿ.1175808ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1339327ÿÿÿÿ.5948409
      ÿÿÿÿÿÿÿÿÿcut4ÿ|ÿÿÿ1.236343ÿÿÿ.1462188ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.9497593ÿÿÿÿ1.522926
      --------------+----------------------------------------------------------------
      /p_life_idealÿ|
      ÿÿÿÿÿÿÿÿÿcut1ÿ|ÿÿ-1.264692ÿÿÿ.1515538ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ-1.561732ÿÿÿ-.9676522
      ÿÿÿÿÿÿÿÿÿcut2ÿ|ÿÿ-.3924567ÿÿÿ.1212637ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ-.6301292ÿÿÿ-.1547842
      ÿÿÿÿÿÿÿÿÿcut3ÿ|ÿÿÿ.3658428ÿÿÿ.1209823ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1287218ÿÿÿÿ.6029638
      ÿÿÿÿÿÿÿÿÿcut4ÿ|ÿÿÿ1.274346ÿÿÿ.1537466ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.9730084ÿÿÿÿ1.575684
      --------------+----------------------------------------------------------------
      /p_life_satÿÿÿ|
      ÿÿÿÿÿÿÿÿÿcut1ÿ|ÿÿ-1.150196ÿÿÿ.1308569ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ-1.406671ÿÿÿ-.8937216
      ÿÿÿÿÿÿÿÿÿcut2ÿ|ÿÿ-.3421812ÿÿÿ.1090382ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ-.5558921ÿÿÿ-.1284703
      ÿÿÿÿÿÿÿÿÿcut3ÿ|ÿÿÿ.3457604ÿÿÿ.1086097ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1328893ÿÿÿÿ.5586315
      ÿÿÿÿÿÿÿÿÿcut4ÿ|ÿÿÿ1.137317ÿÿÿ.1302363ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.8820581ÿÿÿÿ1.392575
      --------------+----------------------------------------------------------------
      ÿÿÿÿÿÿÿÿvar(F)|ÿÿÿ1.359835ÿÿÿ.3714325ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.7961305ÿÿÿÿ2.322672
      -------------------------------------------------------------------------------

      .ÿpredictÿdoubleÿF,ÿlatentÿ//ÿUseÿtheÿpredictedÿfactorÿvalues
      (optionÿebmeansÿassumed)
      (usingÿ7ÿquadratureÿpoints)

      .ÿ
      .ÿexit

      endÿofÿdo-file


      .


      For the first alternative (exploratory factor analysis), you'll need to install the user-written command polychoric. You can find out where to get it by typing
      Code:
      search polychoric
      at the command line in Stata.

      Comment

      Working...
      X