Hi,
I posted a similar problem earlier in the day but I felt it was a bit confusing and unfortunately I cannot delete it, so I am pasting the revised data again. Apologies for the duplication. I have the following sample of intra-day data:
In the actual data I have many more ids. I would like to do a rolling estimation (e.g. 'total of price variable') using a window of e.g. 10 days by id. I would like to perform this estimation by id and day i.e. for every day I would like to estimate the total of price over next 10 days. Starting on with 1st October do the 'total' for the next 10 days i.e. till 10th. Then from 2nd October do the total over next 10 days and so on. Since the data is intra-day and within a day I have more than one observation, I am not sure how to properly define a window so that it rolls over the 10 days. Would appreciate if someone could help in finding the solution to the problem. Thank You.
I posted a similar problem earlier in the day but I felt it was a bit confusing and unfortunately I cannot delete it, so I am pasting the revised data again. Apologies for the duplication. I have the following sample of intra-day data:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float id long date double(time price) 1 21823 56100000 102.387 1 21824 33596000 102.288 1 21824 47710000 102.397 1 21825 50009000 102.742 1 21825 60499000 102.702736 1 21826 12119000 102.582 1 21826 32789000 102.565 1 21826 43951000 102.609 1 21826 54412000 102.617 1 21826 54412000 102.55451 1 21829 37797000 102.545 1 21829 45684000 102.522 1 21830 44628000 102.536 1 21831 35067000 102.645 1 21831 37511000 102.542 1 21831 48165000 102.174 1 21831 48165000 102.474 1 21831 64399000 102.4974 1 21831 64399000 102.4974 1 21832 36633000 102.355 1 21832 57553000 102.299 1 21832 57995000 102.338645 1 21833 40237000 102.319 1 21836 57954000 102.080452 1 21837 30188000 102.332 1 21837 32455999.999999996 102.268 1 21837 44701000 102.073 1 21838 32155999.999999996 102.259 1 21838 33861000 102.403 1 21838 33861000 102.403 1 21838 33861000 102.403 1 21839 40823000 102.237 1 21839 40823000 102.237 1 21840 10127000 102.424 1 21840 28777000 102.423 1 21840 42387000 102.453 1 21840 42387000 102.453 1 21843 36383000 102.36 1 21843 42529000 102.327 1 21843 44051000 102.39 1 21843 46214000 102.356 1 21843 46214000 102.206 1 21843 46214000 102.206 1 21843 47160000 102.287 1 21843 47160000 102.137 1 21843 47160000 102.137 1 21843 54017000 102.389 1 21844 42487000 102.378 1 21844 51397000 102.388 1 21844 56163000 102.403 1 21845 31133000 102.336 1 21845 39218000 102.36 1 21845 40921000 102.353 1 21845 57404000 102.357 1 21846 33927000 102.367 1 21846 33927000 102.315821 1 21846 37407000 102.452 1 21846 37795000 102.537 1 21846 40807000 102.437 1 21846 40807000 102.437 1 21846 43021000 102.497 1 21847 21949000 102.467 1 21847 29852000 102.238 1 21850 32089000.000000004 102.146 1 21850 33233000 102.087 1 21851 35148000 102.856 1 21851 35149000 102.189 1 21851 37061000 102.181 1 21851 41673000 102.189 1 21851 63717000 102.268 1 21852 31804000.000000004 102.134 1 21852 31821000 102.095 1 21852 38297000 102.235 1 21852 38310000 102.235 1 21852 40491000 102.155 1 21852 55524000 102.261 1 21853 34598000 102.172 1 21853 34598000 102.272 1 21853 42468000 102.357 1 21854 49875000 102.38718 1 21854 49875000 102.35594 1 21857 35252000 102.308 1 21857 53270000 102.244 1 21858 36819000 102.148 1 21858 40646000 102.207 1 21858 55883000 102.214 1 21858 59147000 102.186285 1 21859 36765000 102.232 1 21859 37575000 102.278 1 21859 39973000 102.165 1 21859 51312000 102.197 1 21860 40842000 102.07 1 21861 54688000 101.9095 1 21861 54688000 102.0095 1 21865 36402000 102.038 1 21865 43839000 101.891 1 21865 43839000 101.954 1 21865 43978000 101.948 1 21865 52278000 102.017 1 21865 58523000 101.968 end format %td date format %tcHH:MM:SS time
Comment