Dear Stata friends,
I have the problem that I do not get the Odds ratio and lrtest information when using the estout command.
melogit teayyopp if mysampleee==1, or || country:, intpoints(30)
Fitting fixed-effects model:
Iteration 0: log likelihood = -286811.83
Iteration 1: log likelihood = -267240.07
Iteration 2: log likelihood = -267210.85
Iteration 3: log likelihood = -267210.85
Refining starting values:
Grid node 0: log likelihood = -260503.05
Fitting full model:
Iteration 0: log likelihood = -260503.05 (not concave)
Iteration 1: log likelihood = -260500.31 (not concave)
Iteration 2: log likelihood = -260497.57 (not concave)
Iteration 3: log likelihood = -260495.25 (not concave)
Iteration 4: log likelihood = -260493.33 (not concave)
Iteration 5: log likelihood = -260491.76 (not concave)
Iteration 6: log likelihood = -260490.52
Iteration 7: log likelihood = -260489.54
Iteration 8: log likelihood = -260488.66
Iteration 9: log likelihood = -260488.52
Iteration 10: log likelihood = -260488.49
Iteration 11: log likelihood = -260488.49
Mixed-effects logistic regression Number of obs = 1277158
Group variable: country Number of groups = 33
Obs per group:
min = 8,119
avg = 38,701.8
max = 315,334
Integration method: mvaghermite Integration pts. = 30
Wald chi2(0) = .
Log likelihood = -260488.49 Prob > chi2 = .
------------------------------------------------------------------------------
teayyopp | Odds Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | .0601004 .004484 -37.69 0.000 .0519242 .0695639
-------------+----------------------------------------------------------------
country |
var(_cons)| .1827738 .0451973 .1125704 .296759
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
LR test vs. logistic model: chibar2(01) = 13444.71 Prob >= chibar2 = 0.0000
. estimates store model2
estout * using model, replace cells((b(fmt(3) label("b_Coeff")) p(par fmt(3) label("p_Val")) _star(label("Star")) se(fmt(3) label("Std_Err")))) starlevels(* 0.10 ** 0.05 *** 0.01) stats(N F chi2 df df_m aic bic lrtest_chi2 lrtest_df lrtest_p)
Output:
The output shows the b coefficient and nothing for the lrtest results. However, you can see from above the lrtest is 13444.71 and p-value is 0.0000
Do you know the reason for that issue?
Thank you very much!
Best wishes,
Michael
I have the problem that I do not get the Odds ratio and lrtest information when using the estout command.
melogit teayyopp if mysampleee==1, or || country:, intpoints(30)
Fitting fixed-effects model:
Iteration 0: log likelihood = -286811.83
Iteration 1: log likelihood = -267240.07
Iteration 2: log likelihood = -267210.85
Iteration 3: log likelihood = -267210.85
Refining starting values:
Grid node 0: log likelihood = -260503.05
Fitting full model:
Iteration 0: log likelihood = -260503.05 (not concave)
Iteration 1: log likelihood = -260500.31 (not concave)
Iteration 2: log likelihood = -260497.57 (not concave)
Iteration 3: log likelihood = -260495.25 (not concave)
Iteration 4: log likelihood = -260493.33 (not concave)
Iteration 5: log likelihood = -260491.76 (not concave)
Iteration 6: log likelihood = -260490.52
Iteration 7: log likelihood = -260489.54
Iteration 8: log likelihood = -260488.66
Iteration 9: log likelihood = -260488.52
Iteration 10: log likelihood = -260488.49
Iteration 11: log likelihood = -260488.49
Mixed-effects logistic regression Number of obs = 1277158
Group variable: country Number of groups = 33
Obs per group:
min = 8,119
avg = 38,701.8
max = 315,334
Integration method: mvaghermite Integration pts. = 30
Wald chi2(0) = .
Log likelihood = -260488.49 Prob > chi2 = .
------------------------------------------------------------------------------
teayyopp | Odds Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | .0601004 .004484 -37.69 0.000 .0519242 .0695639
-------------+----------------------------------------------------------------
country |
var(_cons)| .1827738 .0451973 .1125704 .296759
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
LR test vs. logistic model: chibar2(01) = 13444.71 Prob >= chibar2 = 0.0000
. estimates store model2
estout * using model, replace cells((b(fmt(3) label("b_Coeff")) p(par fmt(3) label("p_Val")) _star(label("Star")) se(fmt(3) label("Std_Err")))) starlevels(* 0.10 ** 0.05 *** 0.01) stats(N F chi2 df df_m aic bic lrtest_chi2 lrtest_df lrtest_p)
Output:
model2 | |
b_Coeff | |
teayyopp | |
_cons | -2.812 |
/ | |
var(_cons[country]) | 0.183 |
N | 1.277.158.000 |
F | |
chi2 | |
df | |
df_m | 0.000 |
aic | 520.980.982 |
bic | 521.005.102 |
lrtest_chi2 | |
lrtest_df | |
lrtest_p |
Do you know the reason for that issue?
Thank you very much!
Best wishes,
Michael
Comment