Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Gologit2 + interactions


    Dear Statalist,
    I am using gologit2 for predicting the impact of mainly educational level (low, mid, high) and employment status (employed, unemployed, housewife, other) as well as the interactions of these on happiness (very unhappy, unhappy, neither nor, happy, very happy). I have some questions, and would be grateful if you could help.



















    At the end of my message, I am sharing the full model (the model is for married women between 25 and 40), and as a snapshot right below is the gologit2 result for the fourth level of happiness (happy) (fifth level (very happy) is the ref category), using edulevel##employmentstatus as the indep variable (low edu (1) and in paid work (1) are ref. categories):



    mid edu x unemployed .69(.70)
    mid edu x housewife .20(.25)
    mid edu x other emp. status .53(.43)
    high edu x unemployed -12.76(683.44)
    high edu x housewife 1.17(.58)*
    high edu x other emp. status 1.25 (.64)*
    constant -2.49 (.14)***


    My interpretation for interactions based on my research and reading other relevant papers is:

    Controlling for educational level and employment status, rather than having low education, married women with medium-level education who are unemployed are statistically significantly more likely be in the first four categories of happiness relative to being very happy. (I am still not sure where to situate the ref category of employment in the interactions (which is "in paid work"))
    • Is this interpretation right, and is employment status not a part of any interpretations because the variable is edu#emp and not emp#edu?
    • Is it ok to use a separate model only for interactions (edu#employment rather than edu##employment) -this makes the coefficients more stat. significant?
    • Is using "margins" adequate for predicted probabilities after gologit2?
    Thank you for your time in advance.

    Best regards,
    A.


    -------
    Full model with the command:

    gologit2 newhappiness i.edu2##i.employment2 if women==1 & married==1 & age>24 | age<41

    Generalized Ordered Logit Estimates Number of obs = 4,778
    LR chi2(44) = 199.60
    Prob > chi2 = 0.0000
    Log likelihood = -5892.8282 Pseudo R2 = 0.0167

    -------------------------------------------------------------------------------
    > ---
    newhappiness | Coef. Std. Err. z P>|z| [95% Conf. Interv
    > al]
    -----------------+-------------------------------------------------------------
    > ---
    1 |
    edu2 |
    2 | .1547906 .358403 0.43 0.666 -.5476663 .8572
    > 476
    3 | 1.49217 1.032369 1.45 0.148 -.5312365 3.515
    > 576
    |
    employment2 |
    2 | -1.651732 .3934039 -4.20 0.000 -2.42279 -.8806
    > 747
    3 | -.0204169 .2829476 -0.07 0.942 -.574984 .5341
    > 501
    4 | -1.045575 .3869348 -2.70 0.007 -1.803953 -.2871
    > 967
    |
    edu2#employment2 |
    2 2 | 1.621811 .7507637 2.16 0.031 .1503407 3.09
    > 328
    2 3 | -.1515169 .4913804 -0.31 0.758 -1.114605 .8115
    > 711
    2 4 | 1.38689 .6868248 2.02 0.043 .040738 2.733
    > 042
    3 2 | 13.05099 903.986 0.01 0.988 -1758.729 1784.
    > 831
    3 3 | 11.7874 1086.223 0.01 0.991 -2117.17 2140.
    > 745
    3 4 | -.8174096 1.480582 -0.55 0.581 -3.719298 2.084
    > 479
    |
    _cons | 3.666567 .2456152 14.93 0.000 3.18517 4.147
    > 964
    -----------------+-------------------------------------------------------------
    > ---
    2 |
    edu2 |
    2 | .1511321 .1644236 0.92 0.358 -.1711323 .4733
    > 964
    3 | .6260354 .309864 2.02 0.043 .0187132 1.233
    > 358
    |
    employment2 |
    2 | -1.458335 .2324866 -6.27 0.000 -1.914 -1.002
    > 669
    3 | .1839836 .1337072 1.38 0.169 -.0780776 .4460
    > 449
    4 | -.8204532 .2066869 -3.97 0.000 -1.225552 -.4153
    > 542
    |
    edu2#employment2 |
    2 2 | .4322724 .3254839 1.33 0.184 -.2056643 1.070
    > 209
    2 3 | .1121248 .2466386 0.45 0.649 -.3712781 .5955
    > 276
    2 4 | 1.317152 .3370311 3.91 0.000 .6565834 1.977
    > 721
    3 2 | .6097216 .7300508 0.84 0.404 -.8211516 2.040
    > 595
    3 3 | -.5666551 .8122474 -0.70 0.485 -2.158631 1.025
    > 321
    3 4 | .8627773 .8150215 1.06 0.290 -.7346355 2.46
    > 019
    |
    _cons | 1.896557 .1136762 16.68 0.000 1.673756 2.119
    > 358
    -----------------+-------------------------------------------------------------
    > ---
    3 |
    edu2 |
    2 | .1165318 .1087664 1.07 0.284 -.0966465 .32
    > 971
    3 | .6586714 .1833428 3.59 0.000 .2993261 1.018
    > 017
    |
    employment2 |
    2 | -1.302325 .2399155 -5.43 0.000 -1.772551 -.8320
    > 991
    3 | .2517154 .0895231 2.81 0.005 .0762534 .4271
    > 774
    4 | -.2636517 .1689614 -1.56 0.119 -.5948099 .0675
    > 065
    |
    edu2#employment2 |
    2 2 | .4137267 .3083412 1.34 0.180 -.1906109 1.018
    > 064
    2 3 | -.0994364 .1539574 -0.65 0.518 -.4011874 .2023
    > 146
    2 4 | .345244 .2246619 1.54 0.124 -.0950852 .7855
    > 733
    3 2 | .3085669 .5443729 0.57 0.571 -.7583843 1.375
    > 518
    3 3 | .5337038 .6568673 0.81 0.417 -.7537324 1.82
    > 114
    3 4 | .291513 .48085 0.61 0.544 -.6509356 1.233
    > 962
    |
    _cons | .2297448 .0770898 2.98 0.003 .0786516 .380
    > 838
    -----------------+-------------------------------------------------------------
    > ---
    4 |
    edu2 |
    2 | .1632639 .1962506 0.83 0.405 -.2213803 .547
    > 908
    3 | .265104 .2932042 0.90 0.366 -.3095657 .8397
    > 737
    |
    employment2 |
    2 | -1.00188 .6034976 -1.66 0.097 -2.184714 .1809
    > 531
    3 | .2835846 .1622066 1.75 0.080 -.0343345 .6015
    > 036
    4 | -.3208984 .3560915 -0.90 0.367 -1.018825 .3770
    > 282
    |
    edu2#employment2 |
    2 2 | .6861652 .7077328 0.97 0.332 -.7009655 2.073
    > 296
    2 3 | .198249 .2522358 0.79 0.432 -.2961241 .692
    > 622
    2 4 | .5332706 .4295388 1.24 0.214 -.30861 1.375
    > 151
    3 2 | -12.76436 683.437 -0.02 0.985 -1352.276 1326.
    > 747
    3 3 | 1.172605 .5788301 2.03 0.043 .0381194 2.307
    > 092
    3 4 | 1.251019 .6356624 1.97 0.049 .0051435 2.496
    > 894
    |
    _cons | -2.494466 .1442841 -17.29 0.000 -2.777258 -2.211
    > 675
    -------------------------------------------------------------------------------
    > ---


  • #2
    I don't know why there is a huge gap between paragraphs in my text, sorry about that!

    Comment


    • #3
      Hi Alice. Your output is very hard to read, which makes it hard to answer your question. I suggest reposting it using code tags. See the Statalist FAQ

      Also, you may want to look at

      https://www3.nd.edu/~rwilliam/xsoc73994/Margins05.pdf
      -------------------------------------------
      Richard Williams, Notre Dame Dept of Sociology
      StataNow Version: 19.5 MP (2 processor)

      EMAIL: [email protected]
      WWW: https://www3.nd.edu/~rwilliam

      Comment


      • #4
        Hello Professor Williams,

        Thank you so much for your reply. Sorry for the presentation, I am new here, so now I pasted the output in between code tags, hope it worked! I've read your work on gologit2, thank you for this great addition to the literature, I'll now read the link you shared for margins.

        Best regards,
        A.

        -

        education (1)= low edu (ref.)
        education (2)= mid edu
        education (3)= high edu

        employment (1)= working (ref.)
        employment (2)= unemployed
        employment (3)= housewife
        employment (4) = other employment statuses

        Code:
         gologit2 newhappiness i.edu2##i.employment2 if women==1 & married==1 & age>24 | age<41
        
        Generalized Ordered Logit Estimates             Number of obs     =      4,778
                                                        LR chi2(44)       =     199.60
                                                        Prob > chi2       =     0.0000
        Log likelihood = -5892.8282                     Pseudo R2         =     0.0167
        
        ----------------------------------------------------------------------------------
            newhappiness |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -----------------+----------------------------------------------------------------
        1                |
                    edu2 |
                      2  |   .1547906    .358403     0.43   0.666    -.5476663    .8572476
                      3  |    1.49217   1.032369     1.45   0.148    -.5312365    3.515576
                         |
             employment2 |
                      2  |  -1.651732   .3934039    -4.20   0.000     -2.42279   -.8806747
                      3  |  -.0204169   .2829476    -0.07   0.942     -.574984    .5341501
                      4  |  -1.045575   .3869348    -2.70   0.007    -1.803953   -.2871967
                         |
        edu2#employment2 |
                    2 2  |   1.621811   .7507637     2.16   0.031     .1503407     3.09328
                    2 3  |  -.1515169   .4913804    -0.31   0.758    -1.114605    .8115711
                    2 4  |    1.38689   .6868248     2.02   0.043      .040738    2.733042
                    3 2  |   13.05099    903.986     0.01   0.988    -1758.729    1784.831
                    3 3  |    11.7874   1086.223     0.01   0.991     -2117.17    2140.745
                    3 4  |  -.8174096   1.480582    -0.55   0.581    -3.719298    2.084479
                         |
                   _cons |   3.666567   .2456152    14.93   0.000      3.18517    4.147964
        -----------------+----------------------------------------------------------------
        2                |
                    edu2 |
                      2  |   .1511321   .1644236     0.92   0.358    -.1711323    .4733964
                      3  |   .6260354    .309864     2.02   0.043     .0187132    1.233358
                         |
             employment2 |
                      2  |  -1.458335   .2324866    -6.27   0.000       -1.914   -1.002669
                      3  |   .1839836   .1337072     1.38   0.169    -.0780776    .4460449
                      4  |  -.8204532   .2066869    -3.97   0.000    -1.225552   -.4153542
                         |
        edu2#employment2 |
                    2 2  |   .4322724   .3254839     1.33   0.184    -.2056643    1.070209
                    2 3  |   .1121248   .2466386     0.45   0.649    -.3712781    .5955276
                    2 4  |   1.317152   .3370311     3.91   0.000     .6565834    1.977721
                    3 2  |   .6097216   .7300508     0.84   0.404    -.8211516    2.040595
                    3 3  |  -.5666551   .8122474    -0.70   0.485    -2.158631    1.025321
                    3 4  |   .8627773   .8150215     1.06   0.290    -.7346355     2.46019
                         |
                   _cons |   1.896557   .1136762    16.68   0.000     1.673756    2.119358
        -----------------+----------------------------------------------------------------
        3                |
                    edu2 |
                      2  |   .1165318   .1087664     1.07   0.284    -.0966465      .32971
                      3  |   .6586714   .1833428     3.59   0.000     .2993261    1.018017
                         |
             employment2 |
                      2  |  -1.302325   .2399155    -5.43   0.000    -1.772551   -.8320991
                      3  |   .2517154   .0895231     2.81   0.005     .0762534    .4271774
                      4  |  -.2636517   .1689614    -1.56   0.119    -.5948099    .0675065
                         |
        edu2#employment2 |
                    2 2  |   .4137267   .3083412     1.34   0.180    -.1906109    1.018064
                    2 3  |  -.0994364   .1539574    -0.65   0.518    -.4011874    .2023146
                    2 4  |    .345244   .2246619     1.54   0.124    -.0950852    .7855733
                    3 2  |   .3085669   .5443729     0.57   0.571    -.7583843    1.375518
                    3 3  |   .5337038   .6568673     0.81   0.417    -.7537324     1.82114
                    3 4  |    .291513     .48085     0.61   0.544    -.6509356    1.233962
                         |
                   _cons |   .2297448   .0770898     2.98   0.003     .0786516     .380838
        -----------------+----------------------------------------------------------------
        4                |
                    edu2 |
                      2  |   .1632639   .1962506     0.83   0.405    -.2213803     .547908
                      3  |    .265104   .2932042     0.90   0.366    -.3095657    .8397737
                         |
             employment2 |
                      2  |   -1.00188   .6034976    -1.66   0.097    -2.184714    .1809531
                      3  |   .2835846   .1622066     1.75   0.080    -.0343345    .6015036
                      4  |  -.3208984   .3560915    -0.90   0.367    -1.018825    .3770282
                         |
        edu2#employment2 |
                    2 2  |   .6861652   .7077328     0.97   0.332    -.7009655    2.073296
                    2 3  |    .198249   .2522358     0.79   0.432    -.2961241     .692622
                    2 4  |   .5332706   .4295388     1.24   0.214      -.30861    1.375151
                    3 2  |  -12.76436    683.437    -0.02   0.985    -1352.276    1326.747
                    3 3  |   1.172605   .5788301     2.03   0.043     .0381194    2.307092
                    3 4  |   1.251019   .6356624     1.97   0.049     .0051435    2.496894
                         |
                   _cons |  -2.494466   .1442841   -17.29   0.000    -2.777258   -2.211675
        ----------------------------------------------------------------------------------

        Comment


        • #5
          I notice that you have run a totally unrestricted gologit model, i.e. every parameter is free to vary across equations. Personally, I do not find such models very helpful. If you are going to do that, you might as well run mlogit which is much better known and understood.

          Gologit works best when a few variables violate proportional odd while the rest do not. That way you avoid violating the PO assumption while still getting a model that is more parsimonious than mlogit. I would probably rerun your model adding autofit(.01).
          -------------------------------------------
          Richard Williams, Notre Dame Dept of Sociology
          StataNow Version: 19.5 MP (2 processor)

          EMAIL: [email protected]
          WWW: https://www3.nd.edu/~rwilliam

          Comment


          • #6
            Thank you so much, that is very helpful. I will try mlogit to see how it works. Do you have any suggestions regarding my interpretations of the interaction terms (independent from gologit2 model)?

            Thank you!

            Comment


            • #7
              Also, this is the output with autofit (.01)

              Code:
               gologit2 newhappiness i.edu2##i.employment2 if women==1 & married==1 & age>24 | age<41, autofit (.01)
              
              ------------------------------------------------------------------------------
              Testing parallel lines assumption using the .01 level of significance...
              
              Step  1:  Constraints for parallel lines imposed for 2.edu2 (P Value = 0.9919)
              Step  2:  Constraints for parallel lines imposed for 3.edu2#2.employment2 (P Value = 0.9767)
              Step  3:  Constraints for parallel lines imposed for 2.employment2 (P Value = 0.8694)
              Step  4:  Constraints for parallel lines imposed for 3.employment2 (P Value = 0.7433)
              Step  5:  Constraints for parallel lines imposed for 3.edu2 (P Value = 0.2043)
              Step  6:  Constraints for parallel lines imposed for 3.edu2#4.employment2 (P Value = 0.4829)
              Step  7:  Constraints for parallel lines imposed for 3.edu2#3.employment2 (P Value = 0.0817)
              Step  8:  Constraints for parallel lines imposed for 2.edu2#2.employment2 (P Value = 0.0680)
              Step  9:  Constraints for parallel lines imposed for 2.edu2#3.employment2 (P Value = 0.0319)
              Step  10: Constraints for parallel lines imposed for 4.employment2 (P Value = 0.0104)
              Step  11: Constraints for parallel lines imposed for 2.edu2#4.employment2 (P Value = 0.1793)
              Step  12: All explanatory variables meet the pl assumption
              
              Wald test of parallel lines assumption for the final model:
              
               ( 1)  [1]2.edu2 - [2]2.edu2 = 0
               ( 2)  [1]3.edu2 - [2]3.edu2 = 0
               ( 3)  [1]2.employment2 - [2]2.employment2 = 0
               ( 4)  [1]3.employment2 - [2]3.employment2 = 0
               ( 5)  [1]4.employment2 - [2]4.employment2 = 0
               ( 6)  [1]2.edu2#2.employment2 - [2]2.edu2#2.employment2 = 0
               ( 7)  [1]2.edu2#3.employment2 - [2]2.edu2#3.employment2 = 0
               ( 8)  [1]2.edu2#4.employment2 - [2]2.edu2#4.employment2 = 0
               ( 9)  [1]3.edu2#2.employment2 - [2]3.edu2#2.employment2 = 0
               (10)  [1]3.edu2#3.employment2 - [2]3.edu2#3.employment2 = 0
               (11)  [1]3.edu2#4.employment2 - [2]3.edu2#4.employment2 = 0
               (12)  [1]2.edu2 - [3]2.edu2 = 0
               (13)  [1]3.edu2 - [3]3.edu2 = 0
               (14)  [1]2.employment2 - [3]2.employment2 = 0
               (15)  [1]3.employment2 - [3]3.employment2 = 0
               (16)  [1]4.employment2 - [3]4.employment2 = 0
               (17)  [1]2.edu2#2.employment2 - [3]2.edu2#2.employment2 = 0
               (18)  [1]2.edu2#3.employment2 - [3]2.edu2#3.employment2 = 0
               (19)  [1]2.edu2#4.employment2 - [3]2.edu2#4.employment2 = 0
               (20)  [1]3.edu2#2.employment2 - [3]3.edu2#2.employment2 = 0
               (21)  [1]3.edu2#3.employment2 - [3]3.edu2#3.employment2 = 0
               (22)  [1]3.edu2#4.employment2 - [3]3.edu2#4.employment2 = 0
               (23)  [1]2.edu2 - [4]2.edu2 = 0
               (24)  [1]3.edu2 - [4]3.edu2 = 0
               (25)  [1]2.employment2 - [4]2.employment2 = 0
               (26)  [1]3.employment2 - [4]3.employment2 = 0
               (27)  [1]4.employment2 - [4]4.employment2 = 0
               (28)  [1]2.edu2#2.employment2 - [4]2.edu2#2.employment2 = 0
               (29)  [1]2.edu2#3.employment2 - [4]2.edu2#3.employment2 = 0
               (30)  [1]2.edu2#4.employment2 - [4]2.edu2#4.employment2 = 0
               (31)  [1]3.edu2#2.employment2 - [4]3.edu2#2.employment2 = 0
               (32)  [1]3.edu2#3.employment2 - [4]3.edu2#3.employment2 = 0
               (33)  [1]3.edu2#4.employment2 - [4]3.edu2#4.employment2 = 0
              
                         chi2( 33) =   46.84
                       Prob > chi2 =    0.0559
              
              An insignificant test statistic indicates that the final model
              does not violate the proportional odds/ parallel lines assumption
              
              If you re-estimate this exact same model with gologit2, instead 
              of autofit you can save time by using the parameter
              
              pl(1b.edu2 2.edu2 3.edu2 1b.employment2 2.employment2 3.employment2 4.employment2 1b.edu2#1b.employment2 1b.edu2#2o.employment2 1b.edu2
              > #3o.employment2 1b.edu2#4o.employment2 2o.edu2#1b.employment2 2.edu2#2.employment2 2.edu2#3.employment2 2.edu2#4.employment2 3o.edu2#
              > 1b.employment2 3.edu2#2.employment2 3.edu2#3.employment2 3.edu2#4.employment2)
              
              ------------------------------------------------------------------------------
              
              Generalized Ordered Logit Estimates             Number of obs     =      4,778
                                                              LR chi2(11)       =     151.28
                                                              Prob > chi2       =     0.0000
              Log likelihood = -5916.9842                     Pseudo R2         =     0.0126
              
               ( 1)  [1]2.edu2 - [2]2.edu2 = 0
               ( 2)  [1]3.edu2 - [2]3.edu2 = 0
               ( 3)  [1]2.employment2 - [2]2.employment2 = 0
               ( 4)  [1]3.employment2 - [2]3.employment2 = 0
               ( 5)  [1]4.employment2 - [2]4.employment2 = 0
               ( 6)  [1]2.edu2#2.employment2 - [2]2.edu2#2.employment2 = 0
               ( 7)  [1]2.edu2#3.employment2 - [2]2.edu2#3.employment2 = 0
               ( 8)  [1]2.edu2#4.employment2 - [2]2.edu2#4.employment2 = 0
               ( 9)  [1]3.edu2#2.employment2 - [2]3.edu2#2.employment2 = 0
               (10)  [1]3.edu2#3.employment2 - [2]3.edu2#3.employment2 = 0
               (11)  [1]3.edu2#4.employment2 - [2]3.edu2#4.employment2 = 0
               (12)  [2]2.edu2 - [3]2.edu2 = 0
               (13)  [2]3.edu2 - [3]3.edu2 = 0
               (14)  [2]2.employment2 - [3]2.employment2 = 0
               (15)  [2]3.employment2 - [3]3.employment2 = 0
               (16)  [2]4.employment2 - [3]4.employment2 = 0
               (17)  [2]2.edu2#2.employment2 - [3]2.edu2#2.employment2 = 0
               (18)  [2]2.edu2#3.employment2 - [3]2.edu2#3.employment2 = 0
               (19)  [2]2.edu2#4.employment2 - [3]2.edu2#4.employment2 = 0
               (20)  [2]3.edu2#2.employment2 - [3]3.edu2#2.employment2 = 0
               (21)  [2]3.edu2#3.employment2 - [3]3.edu2#3.employment2 = 0
               (22)  [2]3.edu2#4.employment2 - [3]3.edu2#4.employment2 = 0
               (23)  [3]2.edu2 - [4]2.edu2 = 0
               (24)  [3]3.edu2 - [4]3.edu2 = 0
               (25)  [3]2.employment2 - [4]2.employment2 = 0
               (26)  [3]3.employment2 - [4]3.employment2 = 0
               (27)  [3]4.employment2 - [4]4.employment2 = 0
               (28)  [3]2.edu2#2.employment2 - [4]2.edu2#2.employment2 = 0
               (29)  [3]2.edu2#3.employment2 - [4]2.edu2#3.employment2 = 0
               (30)  [3]2.edu2#4.employment2 - [4]2.edu2#4.employment2 = 0
               (31)  [3]3.edu2#2.employment2 - [4]3.edu2#2.employment2 = 0
               (32)  [3]3.edu2#3.employment2 - [4]3.edu2#3.employment2 = 0
               (33)  [3]3.edu2#4.employment2 - [4]3.edu2#4.employment2 = 0
              ----------------------------------------------------------------------------------
                  newhappiness |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
              -----------------+----------------------------------------------------------------
              1                |
                          edu2 |
                            2  |   .1265903   .1002906     1.26   0.207    -.0699755    .3231562
                            3  |   .5408232   .1590315     3.40   0.001     .2291272    .8525193
                               |
                   employment2 |
                            1  |   7.64e-16   1.33e-16     5.74   0.000     5.03e-16    1.03e-15
                            2  |  -1.383112   .1965818    -7.04   0.000    -1.768406    -.997819
                            3  |   .2412587   .0825772     2.92   0.003     .0794104     .403107
                            4  |  -.4415372   .1601017    -2.76   0.006    -.7553308   -.1277436
                               |
              edu2#employment2 |
                          1 1  |   1.18e-15   9.33e-17    12.61   0.000     9.94e-16    1.36e-15
                          1 2  |   7.13e-16   1.33e-16     5.35   0.000     4.52e-16    9.75e-16
                          1 3  |  -1.89e-16   1.09e-16    -1.73   0.083    -4.02e-16    2.46e-17
                          1 4  |  -7.17e-16   1.29e-16    -5.55   0.000    -9.70e-16   -4.64e-16
                          2 1  |  -3.89e-16   1.16e-16    -3.34   0.001    -6.17e-16   -1.60e-16
                          2 2  |   .5261214   .2606358     2.02   0.044     .0152845    1.036958
                          2 3  |   -.000885   .1422669    -0.01   0.995    -.2797229     .277953
                          2 4  |   .5914716   .2098131     2.82   0.005     .1802455    1.002698
                          3 1  |   3.77e-16   8.28e-17     4.55   0.000     2.15e-16    5.39e-16
                          3 2  |   .4745655    .472173     1.01   0.315    -.4508766    1.400008
                          3 3  |   .7675161    .486015     1.58   0.114    -.1850557    1.720088
                          3 4  |   .7674105   .4331062     1.77   0.076     -.081462    1.616283
                               |
                         _cons |   3.527738   .1114947    31.64   0.000     3.309212    3.746263
              -----------------+----------------------------------------------------------------
              2                |
                          edu2 |
                            1  |  -9.18e-16   3.62e-16    -2.54   0.011    -1.63e-15   -2.10e-16
                            2  |   .1265903   .1002906     1.26   0.207    -.0699755    .3231562
                            3  |   .5408232   .1590315     3.40   0.001     .2291272    .8525193
                               |
                   employment2 |
                            1  |   2.99e-16   1.75e-16     1.71   0.088    -4.46e-17    6.42e-16
                            2  |  -1.383112   .1965818    -7.04   0.000    -1.768406    -.997819
                            3  |   .2412587   .0825772     2.92   0.003     .0794104     .403107
                            4  |  -.4415372   .1601017    -2.76   0.006    -.7553308   -.1277436
                               |
              edu2#employment2 |
                          1 1  |   1.39e-16   2.18e-17     6.37   0.000     9.59e-17    1.81e-16
                          1 2  |  -2.68e-16   2.80e-17    -9.60   0.000    -3.23e-16   -2.14e-16
                          1 3  |   9.76e-18   2.73e-17     0.36   0.720    -4.37e-17    6.32e-17
                          1 4  |   3.91e-16   1.64e-17    23.83   0.000     3.59e-16    4.24e-16
                          2 1  |  -1.12e-16   1.44e-17    -7.76   0.000    -1.40e-16   -8.39e-17
                          2 2  |   .5261214   .2606358     2.02   0.044     .0152845    1.036958
                          2 3  |   -.000885   .1422669    -0.01   0.995    -.2797229     .277953
                          2 4  |   .5914716   .2098131     2.82   0.005     .1802455    1.002698
                          3 1  |   3.60e-17   9.18e-18     3.93   0.000     1.80e-17    5.40e-17
                          3 2  |   .4745655    .472173     1.01   0.315    -.4508766    1.400008
                          3 3  |   .7675161    .486015     1.58   0.114    -.1850557    1.720088
                          3 4  |   .7674105   .4331062     1.77   0.076     -.081462    1.616283
                               |
                         _cons |   1.861326   .0789736    23.57   0.000     1.706541    2.016111
              -----------------+----------------------------------------------------------------
              3                |
                          edu2 |
                            1  |   1.14e-16   5.64e-17     2.03   0.042     3.95e-18    2.25e-16
                            2  |   .1265903   .1002906     1.26   0.207    -.0699755    .3231562
                            3  |   .5408232   .1590315     3.40   0.001     .2291272    .8525193
                               |
                   employment2 |
                            1  |  -2.13e-18   8.25e-18    -0.26   0.796    -1.83e-17    1.40e-17
                            2  |  -1.383112   .1965818    -7.04   0.000    -1.768406    -.997819
                            3  |   .2412587   .0825772     2.92   0.003     .0794104     .403107
                            4  |  -.4415372   .1601017    -2.76   0.006    -.7553308   -.1277436
                               |
              edu2#employment2 |
                          1 1  |  -1.65e-17   7.11e-18    -2.32   0.020    -3.04e-17   -2.57e-18
                          1 2  |  -1.32e-17   7.56e-18    -1.75   0.080    -2.81e-17    1.57e-18
                          1 3  |  -6.12e-17   1.80e-17    -3.41   0.001    -9.64e-17   -2.60e-17
                          1 4  |  -4.81e-17   6.01e-18    -8.01   0.000    -5.99e-17   -3.64e-17
                          2 1  |   2.55e-17   2.38e-17     1.07   0.284    -2.11e-17    7.22e-17
                          2 2  |   .5261214   .2606358     2.02   0.044     .0152845    1.036958
                          2 3  |   -.000885   .1422669    -0.01   0.995    -.2797229     .277953
                          2 4  |   .5914716   .2098131     2.82   0.005     .1802455    1.002698
                          3 1  |   1.68e-16   2.06e-17     8.15   0.000     1.28e-16    2.09e-16
                          3 2  |   .4745655    .472173     1.01   0.315    -.4508766    1.400008
                          3 3  |   .7675161    .486015     1.58   0.114    -.1850557    1.720088
                          3 4  |   .7674105   .4331062     1.77   0.076     -.081462    1.616283
                               |
                         _cons |    .226809   .0719744     3.15   0.002     .0857418    .3678761
              -----------------+----------------------------------------------------------------
              4                |
                          edu2 |
                            1  |  -4.52e-18   2.68e-17    -0.17   0.866    -5.71e-17    4.81e-17
                            2  |   .1265903   .1002906     1.26   0.207    -.0699755    .3231562
                            3  |   .5408232   .1590315     3.40   0.001     .2291272    .8525193
                               |
                   employment2 |
                            1  |  -6.86e-42   7.57e-42    -0.91   0.365    -2.17e-41    7.98e-42
                            2  |  -1.383112   .1965818    -7.04   0.000    -1.768406    -.997819
                            3  |   .2412587   .0825772     2.92   0.003     .0794104     .403107
                            4  |  -.4415372   .1601017    -2.76   0.006    -.7553308   -.1277436
                               |
              edu2#employment2 |
                          1 1  |  -7.57e-42   8.47e-42    -0.89   0.372    -2.42e-41    9.03e-42
                          1 2  |   2.28e-42   7.68e-42     0.30   0.766    -1.28e-41    1.73e-41
                          1 3  |  -5.04e-42   3.80e-42    -1.33   0.185    -1.25e-41    2.41e-42
                          1 4  |   7.69e-42   1.38e-41     0.56   0.576    -1.93e-41    3.46e-41
                          2 1  |   1.75e-41   1.07e-41     1.63   0.102    -3.49e-42    3.84e-41
                          2 2  |   .5261214   .2606358     2.02   0.044     .0152845    1.036958
                          2 3  |   -.000885   .1422669    -0.01   0.995    -.2797229     .277953
                          2 4  |   .5914716   .2098131     2.82   0.005     .1802455    1.002698
                          3 1  |   5.36e-42   8.43e-42     0.64   0.525    -1.12e-41    2.19e-41
                          3 2  |   .4745655    .472173     1.01   0.315    -.4508766    1.400008
                          3 3  |   .7675161    .486015     1.58   0.114    -.1850557    1.720088
                          3 4  |   .7674105   .4331062     1.77   0.076     -.081462    1.616283
                               |
                         _cons |  -2.426692   .0834709   -29.07   0.000    -2.590292   -2.263092
              ----------------------------------------------------------------------------------
              
              .

              Comment


              • #8
                Make sure you have the latest version of gologit2:

                ssc install gologit2

                All the weird numbers like 1.14e-16 are (hopefully) cleaned up now.

                Since all vars meet proportional odds, you can just use ologit if you want, which makes your life much simpler.
                -------------------------------------------
                Richard Williams, Notre Dame Dept of Sociology
                StataNow Version: 19.5 MP (2 processor)

                EMAIL: [email protected]
                WWW: https://www3.nd.edu/~rwilliam

                Comment


                • #9
                  Oh, that is such a relief! I think in this case, I'll use ologit . Thank you so much for all your help Professor Williams.

                  Comment


                  • #10
                    Professor Williams, I have a follow up question if that's ok. I can now use ologit since at autofit (.01), there is the statement "An insignificant test statistic indicates that the final model
                    does not violate the proportional odds/ parallel lines assumption". Is that right? I am doing a pseudo-panel analysis by doing the same analysis in four cross-sectional data sets (5 years apart each), and when I tried this, in two data sets, there were 2-3 variables in total that haven't met the proportional odds. However, to be able to interpret all outcomes together in a pseudo-panel pattern, I need to use one method for all. Could I still use ologit? Thank you.

                    Comment

                    Working...
                    X