Has anyone run into the problem of mi estimate NOT bringing in the newly created observations in a model? These are the commands so you can see the structure of the data.
I'm stumped (again) and starting to think mi estimate is not all its cracked up to be.
Code:
mi misstable patterns $ylist $xlist
HTML Code:
Missing-value patterns (1 means complete) | Pattern Percent | 1 2 3 4 5 6 7 8 9 ------------+-------------------------------- 14% | 1 1 1 1 1 1 1 1 1 | 64 | 1 1 1 0 0 0 0 0 0 11 | 1 0 0 0 0 0 0 0 0 7 | 0 1 1 1 0 0 0 0 0 1 | 0 0 0 1 0 0 0 0 0 1 | 1 0 0 1 0 0 0 0 0 1 | 1 0 0 1 1 1 1 1 1 ------------+-------------------------------- 100% |
Code:
mi register imputed log_accessions pct_maori deprivationindex log_level6 pctbachelors pctmasters pctdoctorate turnover unemploymentrate15_oecd
Code:
mi register regular funding policyscore
HTML Code:
Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- log_access~s | 3,024 9.940385 .6635382 8.234169 11.85503 pct_maori | 2,906 .1795299 .1433115 -.3225543 .7145595 deprivatio~x | 2,922 7.440636 9.274504 -21.92738 45.97867 log_level6 | 2,906 9.275616 1.420161 3.15082 15.58429 pctbachelors | 2,906 45.69963 5.780976 20.04118 69.70129 -------------+--------------------------------------------------------- pctmasters | 2,906 8.057414 3.164138 -2.479166 21.62572 pctdoctorate | 2,906 2.482619 2.351187 -6.384878 12.85397 turnover | 3,024 16.32612 2.038624 10.07816 21.82732 unemployme~d | 3,034 5.312884 1.585719 .1699752 12.83865 policyscore | 3,048 .5964567 .4906884 0 1 -------------+--------------------------------------------------------- funding | 3,048 .0485564 .2149741 0 1
Code:
mi estimate: xtreg log_accessions pct_maori log_level6 deprivationindex pctbachelors pctmasters pctdoctorate turnover unemploymentrate15_oecd funding policyscore, fe i(region)
HTML Code:
Multiple-imputation estimates Imputations = 20 Fixed-effects (within) regression Number of obs = 168 Group variable: region Number of groups = 14 Obs per group: min = 12 avg = 12.0 max = 12 Average RVI = 2.6497 Largest FMI = 0.8825 Complete DF = 144 DF adjustment: Small sample DF: min = 10.94 avg = 26.36 max = 99.99 Model F test: Equal FMI F( 10, 87.8) = 1.18 Within VCE type: Conventional Prob > F = 0.3127 ----------------------------------------------------------------------------------------- log_accessions | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------+---------------------------------------------------------------- pct_maori | .1583934 .4750647 0.33 0.742 -.8195537 1.136341 log_level6 | .0427818 .0647897 0.66 0.519 -.0947651 .1803286 deprivationindex | .0111996 .0088192 1.27 0.226 -.0078017 .0302009 pctbachelors | -.0013473 .0161937 -0.08 0.935 -.0356404 .0329458 pctmasters | .027238 .0284658 0.96 0.349 -.0316455 .0861216 pctdoctorate | -.0306891 .0358613 -0.86 0.406 -.1071646 .0457863 turnover | -.0258731 .0439013 -0.59 0.564 -.1193276 .0675814 unemploymentrate15_oecd | -.0646297 .0379148 -1.70 0.100 -.1425142 .0132547 funding | .0458863 .1544445 0.30 0.767 -.2605275 .3523001 policyscore | -.0347175 .0677549 -0.51 0.612 -.1732905 .1038555 _cons | 10.13297 1.211425 8.36 0.000 7.46498 12.80097 ------------------------+---------------------------------------------------------------- sigma_u | .48764784 sigma_e | .2173891 rho | .83421637 (fraction of variance due to u_i) ----------------------------------------------------------------------------------------- Note: sigma_u and sigma_e are combined in the original metric.
Comment