I asked a somewhat similar question a couple of days ago and apologize for asking again. I just don't understand what the margins command is returning.
risk2 = total # of injections (persons can report multiple injections / day)
blrisk = total # of injections reported in the 30 days prior to baseline (can be > 30)
age, gender, wrace latinx and homenite are planned covariates
month = month of assessment (1, 3, 6, 9, 12)
dayexp = days persons were at risk
cond = intervention arm
sid = subject identifier
The crude 30-day rate during follow-up is about 40 events / 30 days. "I would like to be able to say something like: The estimated 30-day marginal mean rate is about XX in the active intervention arm and about YY in the control arm." I don't understand what the marginal estimates reported above mean with respect to expected events / some unit of time, and would like to express the outcome as estimated events / 30 days. Thanks.
risk2 = total # of injections (persons can report multiple injections / day)
blrisk = total # of injections reported in the 30 days prior to baseline (can be > 30)
age, gender, wrace latinx and homenite are planned covariates
month = month of assessment (1, 3, 6, 9, 12)
dayexp = days persons were at risk
cond = intervention arm
sid = subject identifier
Code:
.
local covars ib12.month blrisk age i.gender i.wrace i.latinx homenite
. menbreg risk2 `covars' i.cond if month>0 ///
> , exp(dayexp) || sid:, vce(robust) irr nolog
Mixed-effects nbinomial regression Number of obs = 668
Overdispersion: mean
Group variable: sid Number of groups = 213
Obs per group:
min = 1
avg = 3.1
max = 5
Integration method: mvaghermite Integration pts. = 7
Wald chi2(11) = 82.88
Log pseudolikelihood = -2677.3591 Prob > chi2 = 0.0000
(Std. Err. adjusted for 213 clusters in sid)
------------------------------------------------------------------------------
| Robust
risk2 | IRR Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
month |
Mo 1 | 2.237339 .6230537 2.89 0.004 1.296252 3.861661
Mo 3 | 2.88821 .7463729 4.10 0.000 1.740447 4.792882
Mo 6 | 1.560984 .3566892 1.95 0.051 .997462 2.44287
Mo 9 | 1.461995 .3357811 1.65 0.098 .9320677 2.293211
|
blrisk | 1.001802 .0005316 3.39 0.001 1.000761 1.002845
age | .9261572 .013625 -5.21 0.000 .899834 .9532503
|
gender |
Male | 3.264972 1.067272 3.62 0.000 1.720418 6.196192
|
wrace |
White | 1.34672 .4738177 0.85 0.398 .6757694 2.683838
|
latinx |
Latinx | .9710289 .4488155 -0.06 0.949 .3924656 2.402496
homenite | .9997214 .0001893 -1.47 0.141 .9993505 1.000092
|
cond |
Active | .3426471 .0971267 -3.78 0.000 .1965919 .5972121
_cons | 1.354801 .8692848 0.47 0.636 .3852271 4.764687
ln(dayexp) | 1 (exposure)
-------------+----------------------------------------------------------------
/lnalpha | 1.153256 .1081295 .9413257 1.365185
-------------+----------------------------------------------------------------
sid |
var(_cons)| 8.682843 1.156382 6.688039 11.27262
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline incidence rate (conditional on zero random effects).
. margins cond
Predictive margins Number of obs = 668
Model VCE : Robust
Expression : Marginal predicted mean, predict()
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cond |
Control | 8673.77 7431.901 1.17 0.243 -5892.488 23240.03
Active | 2972.042 2491.355 1.19 0.233 -1910.923 7855.007
------------------------------------------------------------------------------
. margins cond, exp(predict(mu)/dayexp)
Predictive margins Number of obs = 668
Model VCE : Robust
Expression : predict(mu)/dayexp
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cond |
Control | 91.84315 73.67205 1.25 0.213 -52.55142 236.2377
Active | 31.46979 24.68277 1.27 0.202 -16.90755 79.84713
------------------------------------------------------------------------------
. margins cond, exp((predict(mu)/dayexp)*30)
Predictive margins Number of obs = 668
Model VCE : Robust
Expression : (predict(mu)/dayexp)*30
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cond |
Control | 2755.294 2210.162 1.25 0.213 -1576.543 7087.132
Active | 944.0937 740.4831 1.27 0.202 -507.2264 2395.414
------------------------------------------------------------------------------
The crude 30-day rate during follow-up is about 40 events / 30 days. "I would like to be able to say something like: The estimated 30-day marginal mean rate is about XX in the active intervention arm and about YY in the control arm." I don't understand what the marginal estimates reported above mean with respect to expected events / some unit of time, and would like to express the outcome as estimated events / 30 days. Thanks.
Comment