Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpreting nestreg output / Stata manual

    Hello, I am using the nestreg command and want to be sure I’m interpreting the output correctly. The Stata manual (https://www.stata.com/manuals/rnestreg.pdf) explains this, but I’m not quite grasping it. Specifically, on page 4 they show the following output:
    Click image for larger version

Name:	Screen Shot 2020-08-17 at 3.14.50 PM.png
Views:	1
Size:	70.7 KB
ID:	1568855




    …with the explanation of what is in the table at the bottom on page 5
    Click image for larger version

Name:	Screen Shot 2020-08-17 at 3.16.07 PM.png
Views:	1
Size:	45.2 KB
ID:	1568856




    However, I’m not grasping what is explained here and what the F statistics in the box at the bottom convey as compared to the F statistic for each of the models listed in the table above. I.e., the difference between the F(5, 44) = 100.63 reported for block 3 above vs. F(3, 44) = 8.85 in the table at the bottom. Any advice would be greatly appreciated!
    Last edited by Kathleen Carluzzo; 17 Aug 2020, 13:31.

  • #2
    nestreg: regress brate (medage) (c.medage#c.medage) (i.region)
    So you have 3 models with the following regressors:

    1. medage
    2. medage & medage^2
    3. medage & medage^2 & region dummies

    1 and 2 are nested in 3, and 1 is nested in 2. Now, when you have nested models, an important question is whether the added variables contribute to the model (in other words, is the change in R-squared resulting from the addition of the variables significant?). To determine this, you test for their joint significance (or whether they are jointly equal to 0). If this is the case, they do not contribute to the model. That is exactly what the F-statistics at the foot of the table tell you.

    the difference between the F(5, 44) = 100.63 reported for block 3 above vs. F(3, 44) = 8.85 in the table at the bottom. Any advice would be greatly appreciated!
    100.63 is a test of the joint significance of all the variables and 8.85 is the joint significance of the regional dummies (added variables to model 2).

    Code:
    webuse census4
    regress brate medage c.medage#c.medage
    test c.medage#c.medage
    regress brate medage c.medage#c.medage i.region
    testparm i.region
    testparm medage c.medage#c.medage i.region
    Res.:

    Code:
    .   . webuse census4
    (birth rate, median age)
    
    . regress brate medage c.medage#c.medage
    
          Source |       SS           df       MS      Number of obs   =        50
    -------------+----------------------------------   F(2, 47)        =    158.75
           Model |  36755.8566         2  18377.9283   Prob > F        =    0.0000
        Residual |  5440.96342        47  115.765179   R-squared       =    0.8711
    -------------+----------------------------------   Adj R-squared   =    0.8656
           Total |    42196.82        49  861.159592   Root MSE        =    10.759
    
    -----------------------------------------------------------------------------------
                brate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
               medage |  -109.8926   15.96663    -6.88   0.000    -142.0133   -77.77189
                      |
    c.medage#c.medage |   1.607334   .2707229     5.94   0.000      1.06271    2.151958
                      |
                _cons |   2007.073   235.4316     8.53   0.000     1533.445      2480.7
    -----------------------------------------------------------------------------------
    
    . test c.medage#c.medage
    
     ( 1)  c.medage#c.medage = 0
    
           F(  1,    47) =   35.25
                Prob > F =    0.0000
    
    . regress brate medage c.medage#c.medage i.region
    
          Source |       SS           df       MS      Number of obs   =        50
    -------------+----------------------------------   F(5, 44)        =    100.63
           Model |  38803.4208         5  7760.68416   Prob > F        =    0.0000
        Residual |  3393.39921        44  77.1227094   R-squared       =    0.9196
    -------------+----------------------------------   Adj R-squared   =    0.9104
           Total |    42196.82        49  861.159592   Root MSE        =     8.782
    
    -----------------------------------------------------------------------------------
                brate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
               medage |  -109.0958   13.52452    -8.07   0.000    -136.3527   -81.83892
                      |
    c.medage#c.medage |   1.635209   .2290536     7.14   0.000     1.173582    2.096836
                      |
               region |
             N Cntrl  |   15.00283   4.252067     3.53   0.001     6.433353    23.57231
               South  |   7.366445   3.953335     1.86   0.069    -.6009775    15.33387
                West  |   21.39679   4.650601     4.60   0.000     12.02412    30.76946
                      |
                _cons |   1947.611   199.8405     9.75   0.000     1544.859    2350.363
    -----------------------------------------------------------------------------------
    
    . testparm i.region
    
     ( 1)  2.region = 0
     ( 2)  3.region = 0
     ( 3)  4.region = 0
    
           F(  3,    44) =    8.85
                Prob > F =    0.0001
    
    . testparm medage c.medage#c.medage i.region
    
     ( 1)  medage = 0
     ( 2)  c.medage#c.medage = 0
     ( 3)  2.region = 0
     ( 4)  3.region = 0
     ( 5)  4.region = 0
    
           F(  5,    44) =  100.63
                Prob > F =    0.0000
    Last edited by Andrew Musau; 17 Aug 2020, 15:21.

    Comment


    • #3
      Thank you so much!

      Comment

      Working...
      X