Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • High coefficients with xtlogit

    Dear All,

    I m running the command xtlogit, re vce(robust) for my model since my dependent variable is a binary variable. However, I am not sure everthing is correct with my model because the coefficient of the variable "HDI" which represents the Human Development Index of the firm's country is very high (7.134983), is it normal to get such a high coefficient? Could you please check whether I made something wrong?

    Code:
    . xtlogit GRIDUMMY EF HDI WGI MARKETBANK TRADE LISTEDCOMP pdi i.SIZECODE i.INDUSTRYCODE i.YEAR, re vce(robust)
    
    Fitting comparison model:
    
    Iteration 0:   log pseudolikelihood = -6698.6528  
    Iteration 1:   log pseudolikelihood = -5516.0771  
    Iteration 2:   log pseudolikelihood = -5464.7453  
    Iteration 3:   log pseudolikelihood =  -5464.424  
    Iteration 4:   log pseudolikelihood =  -5464.424  
    
    Fitting full model:
    
    tau =  0.0     log pseudolikelihood =  -5464.424
    tau =  0.1     log pseudolikelihood = -5311.8319
    tau =  0.2     log pseudolikelihood = -5166.1068
    tau =  0.3     log pseudolikelihood = -5026.4973
    tau =  0.4     log pseudolikelihood = -4892.4275
    tau =  0.5     log pseudolikelihood = -4763.6494
    tau =  0.6     log pseudolikelihood = -4640.6184
    tau =  0.7     log pseudolikelihood = -4525.5951
    tau =  0.8     log pseudolikelihood = -4426.0644
    
    Iteration 0:   log pseudolikelihood =  -4525.463  
    Iteration 1:   log pseudolikelihood = -4260.4518  
    Iteration 2:   log pseudolikelihood = -4202.5863  
    Iteration 3:   log pseudolikelihood = -4189.3637  
    Iteration 4:   log pseudolikelihood = -4189.2971  
    Iteration 5:   log pseudolikelihood = -4189.2613  
    Iteration 6:   log pseudolikelihood = -4189.2613  (backed up)
    Iteration 7:   log pseudolikelihood = -4189.2504  
    Iteration 8:   log pseudolikelihood = -4189.2504  
    
    Calculating robust standard errors:
    
    Random-effects logistic regression              Number of obs     =     10,622
    Group variable: ID                              Number of groups  =      3,457
    
    Random effects u_i ~ Gaussian                   Obs per group:
                                                                  min =          1
                                                                  avg =        3.1
                                                                  max =          7
    
    Integration method: mvaghermite                 Integration pts.  =         12
    
                                                    Wald chi2(51)     =     595.56
    Log pseudolikelihood  = -4189.2504              Prob > chi2       =     0.0000
    
                                     (Std. Err. adjusted for 3,457 clusters in ID)
    ------------------------------------------------------------------------------
                 |               Robust
        GRIDUMMY |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
              EF |   -.794144   .0905921    -8.77   0.000    -.9717012   -.6165867
             HDI |   7.134983   2.103149     3.39   0.001     3.012887    11.25708
             WGI |   .0751934   .0091546     8.21   0.000     .0572507     .093136
      MARKETBANK |    1.51871   .2081931     7.29   0.000     1.110659    1.926761
           TRADE |  -.0213453   .0029042    -7.35   0.000    -.0270375   -.0156531
      LISTEDCOMP |  -.0008253   .0000774   -10.66   0.000     -.000977   -.0006735
             pdi |  -.0181224   .0094897    -1.91   0.056    -.0367219     .000477
                 |
        SIZECODE |
              2  |   .0560961   .2327905     0.24   0.810    -.4001649    .5123572
              3  |  -.7657774   .2692277    -2.84   0.004    -1.293454   -.2381008
                 |
    INDUSTRYCODE |
              2  |   1.093076   .6323171     1.73   0.084    -.1462424    2.332395
              3  |   1.745545   .8048255     2.17   0.030     .1681159    3.322974
              4  |   3.737957   .8479716     4.41   0.000     2.075963     5.39995
              5  |   .1684474   .8915327     0.19   0.850    -1.578925    1.915819
              6  |   .8330704   .5392894     1.54   0.122    -.2239174    1.890058
              7  |   .8476553   .4985822     1.70   0.089    -.1295478    1.824858
              8  |   1.616773   .6954972     2.32   0.020      .253624    2.979923
              9  |   2.094374   .8336663     2.51   0.012     .4604185     3.72833
             10  |   1.820881   .8298653     2.19   0.028     .1943746    3.447387
             11  |   .8696175   .6657727     1.31   0.191     -.435273    2.174508
             12  |   1.660832   .5793592     2.87   0.004     .5253084    2.796355
             13  |   1.097648   .6655542     1.65   0.099    -.2068142     2.40211
             14  |   1.659405   .6085067     2.73   0.006     .4667541    2.852057
             15  |   1.571707     .58902     2.67   0.008     .4172489    2.726165
             16  |  -.4546692   .7386691    -0.62   0.538    -1.902434    .9930958
             17  |   1.141251    .828004     1.38   0.168    -.4816075    2.764109
             18  |   2.761143   .5877891     4.70   0.000     1.609097    3.913188
             19  |  -.6074114   .4955779    -1.23   0.220    -1.578726    .3639034
             20  |   .1029561   .7489992     0.14   0.891    -1.365055    1.570968
             21  |   1.863303    .522451     3.57   0.000     .8393178    2.887288
             22  |   .6279565   .5842609     1.07   0.282    -.5171739    1.773087
             23  |   .4604285   .7443967     0.62   0.536    -.9985623    1.919419
             24  |  -.3339932   .6555017    -0.51   0.610    -1.618753    .9507665
             25  |   1.337136   .6721295     1.99   0.047     .0197861    2.654485
             26  |   1.878334   .6502785     2.89   0.004     .6038116    3.152856
             27  |   -.573694   1.223187    -0.47   0.639    -2.971096    1.823708
             28  |   .3236552   .7054683     0.46   0.646    -1.059037    1.706348
             29  |   .1539578   1.006267     0.15   0.878     -1.81829    2.126206
             30  |   1.959095   .6823053     2.87   0.004      .621801    3.296389
             31  |   .3510582   .6470255     0.54   0.587    -.9170885    1.619205
             32  |   1.460112   .9286049     1.57   0.116    -.3599201    3.280144
             33  |    2.15393   1.982011     1.09   0.277    -1.730741    6.038601
             34  |  -.7165465   .8305085    -0.86   0.388    -2.344313    .9112203
             35  |   1.198915   .9832089     1.22   0.223    -.7281388    3.125969
             36  |   2.259782   .9301801     2.43   0.015     .4366628    4.082902
             37  |   .1138347   1.895794     0.06   0.952    -3.601854    3.829523
                 |
            YEAR |
           2011  |   .0965435   .2068523     0.47   0.641    -.3088796    .5019666
           2012  |   .2651756   .2275511     1.17   0.244    -.1808164    .7111677
           2013  |   .6161574    .237699     2.59   0.010     .1502759    1.082039
           2014  |   .4201237   .2458367     1.71   0.087    -.0617073    .9019548
           2015  |   .4487022    .251094     1.79   0.074    -.0434331    .9408375
           2016  |  -.2402657   .2521466    -0.95   0.341    -.7344639    .2539325
                 |
           _cons |  -4.033084   1.705101    -2.37   0.018    -7.375021   -.6911467
    -------------+----------------------------------------------------------------
        /lnsig2u |   2.622093   .0837984                      2.457851    2.786335
    -------------+----------------------------------------------------------------
         sigma_u |   3.710054   .1554483                      3.417556    4.027587
             rho |   .8070953   .0130468                      .7802294    .8313867
    ------------------------------------------------------------------------------

  • #2
    Is your HDI bound between 0 and 1? If yes, the relatively large coefficient is not surprising; it measures how much the value of the index function changes as HDI increases from the smallest possible level (0) to the largest possible level (1). You may want to re-scale the coefficient estimate and look at the effect of a more plausible increase instead; for example, multiplying HDI by 100 and re-estimating the model will make the coefficient capture the effect of a 0.01 unit increase in HDI.

    Comment


    • #3
      Thakn you very much, your suggestion has solved the problem.

      Comment

      Working...
      X