Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Issue Creating Variables For Multiple Pairs

    Hi all, I have been unable to find a previously answered question on the issue I am facing. An example of my data is shown below

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float date long(fips fipsneighbor1 fipsneighbor2 fipsneighbor3 fipsneighbor4 fipsneighbor5 fipsneighbor6 fipsneighbor7 fipsneighbor8) float av_per_covered_smoke_per_month
    558 10001 10003 10005 24011 24029 24035 34009 34011 34033      .1961142
    559 10001 10003 10005 24011 24029 24035 34009 34011 34033      .0436705
    568 10001 10003 10005 24011 24029 24035 34009 34011 34033    .032979734
    570 10001 10003 10005 24011 24029 24035 34009 34011 34033    .010257742
    578 10001 10003 10005 24011 24029 24035 34009 34011 34033   .0006418067
    581 10001 10003 10005 24011 24029 24035 34009 34011 34033     .06780533
    582 10001 10003 10005 24011 24029 24035 34009 34011 34033      .1070103
    583 10001 10003 10005 24011 24029 24035 34009 34011 34033    .072941884
    592 10001 10003 10005 24011 24029 24035 34009 34011 34033     .03525944
    603 10001 10003 10005 24011 24029 24035 34009 34011 34033      .1069096
    604 10001 10003 10005 24011 24029 24035 34009 34011 34033     .13109824
    605 10001 10003 10005 24011 24029 24035 34009 34011 34033      .1831884
    607 10001 10003 10005 24011 24029 24035 34009 34011 34033     .15773147
    609 10001 10003 10005 24011 24029 24035 34009 34011 34033     .08946574
    615 10001 10003 10005 24011 24029 24035 34009 34011 34033     .03450233
    616 10001 10003 10005 24011 24029 24035 34009 34011 34033      .1869274
    618 10001 10003 10005 24011 24029 24035 34009 34011 34033     .11505583
    619 10001 10003 10005 24011 24029 24035 34009 34011 34033     .09338056
    627 10001 10003 10005 24011 24029 24035 34009 34011 34033    .008289928
    630 10001 10003 10005 24011 24029 24035 34009 34011 34033     .10019654
    631 10001 10003 10005 24011 24029 24035 34009 34011 34033     .13337664
    632 10001 10003 10005 24011 24029 24035 34009 34011 34033     .26234472
    641 10001 10003 10005 24011 24029 24035 34009 34011 34033      .1647501
    643 10001 10003 10005 24011 24029 24035 34009 34011 34033      .1061244
    654 10001 10003 10005 24011 24029 24035 34009 34011 34033     .22167034
    655 10001 10003 10005 24011 24029 24035 34009 34011 34033      .2700496
    664 10001 10003 10005 24011 24029 24035 34009 34011 34033     .06446587
    666 10001 10003 10005 24011 24029 24035 34009 34011 34033      .2254688
    667 10001 10003 10005 24011 24029 24035 34009 34011 34033     .05444578
    676 10001 10003 10005 24011 24029 24035 34009 34011 34033      .1967047
    548 10003 10001 24015 24029 34015 34033 42029 42045     .      .0533122
    558 10003 10001 24015 24029 34015 34033 42029 42045     .      .2150744
    559 10003 10001 24015 24029 34015 34033 42029 42045     .     .00466294
    568 10003 10001 24015 24029 34015 34033 42029 42045     .    .065753154
    569 10003 10001 24015 24029 34015 34033 42029 42045     .    .016367888
    570 10003 10001 24015 24029 34015 34033 42029 42045     .     .04809622
    571 10003 10001 24015 24029 34015 34033 42029 42045     .     .19725946
    581 10003 10001 24015 24029 34015 34033 42029 42045     .     .09862588
    589 10003 10001 24015 24029 34015 34033 42029 42045     . .000030619405
    592 10003 10001 24015 24029 34015 34033 42029 42045     .    .032881062
    603 10003 10001 24015 24029 34015 34033 42029 42045     .     .10993586
    604 10003 10001 24015 24029 34015 34033 42029 42045     .     .10217185
    605 10003 10001 24015 24029 34015 34033 42029 42045     .     .19657345
    607 10003 10001 24015 24029 34015 34033 42029 42045     .     .13150631
    609 10003 10001 24015 24029 34015 34033 42029 42045     .     .05785644
    614 10003 10001 24015 24029 34015 34033 42029 42045     .    .013283235
    616 10003 10001 24015 24029 34015 34033 42029 42045     .      .1545057
    617 10003 10001 24015 24029 34015 34033 42029 42045     .      .3344066
    618 10003 10001 24015 24029 34015 34033 42029 42045     .      .0448908
    627 10003 10001 24015 24029 34015 34033 42029 42045     .  .00052990305
    628 10003 10001 24015 24029 34015 34033 42029 42045     .     .14675705
    629 10003 10001 24015 24029 34015 34033 42029 42045     .      .2461496
    632 10003 10001 24015 24029 34015 34033 42029 42045     .     .26902437
    641 10003 10001 24015 24029 34015 34033 42029 42045     .     .15828156
    642 10003 10001 24015 24029 34015 34033 42029 42045     .     .03831706
    643 10003 10001 24015 24029 34015 34033 42029 42045     .     .12734681
    652 10003 10001 24015 24029 34015 34033 42029 42045     .    .020762434
    654 10003 10001 24015 24029 34015 34033 42029 42045     .     .23013605
    655 10003 10001 24015 24029 34015 34033 42029 42045     .      .2958892
    664 10003 10001 24015 24029 34015 34033 42029 42045     .     .04677977
    666 10003 10001 24015 24029 34015 34033 42029 42045     .      .2354119
    676 10003 10001 24015 24029 34015 34033 42029 42045     .     .19088583
    677 10003 10001 24015 24029 34015 34033 42029 42045     .     .03283391
    679 10003 10001 24015 24029 34015 34033 42029 42045     .     .02849763
    548 24029 10001 10003 24003 24005 24015 24025 24035     .      .0851827
    558 24029 10001 10003 24003 24005 24015 24025 24035     .     .21356656
    559 24029 10001 10003 24003 24005 24015 24025 24035     .   .0032093804
    570 24029 10001 10003 24003 24005 24015 24025 24035     .     .04905337
    582 24029 10001 10003 24003 24005 24015 24025 24035     .     .09919176
    590 24029 10001 10003 24003 24005 24015 24025 24035     .    .002201769
    603 24029 10001 10003 24003 24005 24015 24025 24035     .       .118102
    604 24029 10001 10003 24003 24005 24015 24025 24035     .     .08999056
    605 24029 10001 10003 24003 24005 24015 24025 24035     .      .1750362
    615 24029 10001 10003 24003 24005 24015 24025 24035     .    .033037722
    617 24029 10001 10003 24003 24005 24015 24025 24035     .      .3616422
    618 24029 10001 10003 24003 24005 24015 24025 24035     .      .0814766
    627 24029 10001 10003 24003 24005 24015 24025 24035     .   .0002337162
    628 24029 10001 10003 24003 24005 24015 24025 24035     .     .15745997
    629 24029 10001 10003 24003 24005 24015 24025 24035     .     .23013598
    630 24029 10001 10003 24003 24005 24015 24025 24035     .     .11528352
    632 24029 10001 10003 24003 24005 24015 24025 24035     .     .26118797
    637 24029 10001 10003 24003 24005 24015 24025 24035     .   .0008544384
    639 24029 10001 10003 24003 24005 24015 24025 24035     .    .006891858
    641 24029 10001 10003 24003 24005 24015 24025 24035     .     .12527087
    642 24029 10001 10003 24003 24005 24015 24025 24035     .     .03771503
    654 24029 10001 10003 24003 24005 24015 24025 24035     .      .2174835
    655 24029 10001 10003 24003 24005 24015 24025 24035     .     .28498343
    664 24029 10001 10003 24003 24005 24015 24025 24035     .    .032904003
    666 24029 10001 10003 24003 24005 24015 24025 24035     .      .2236287
    676 24029 10001 10003 24003 24005 24015 24025 24035     .       .178637
    548 34033 10001 10003 34011 34015     .     .     .     .     .06330993
    558 34033 10001 10003 34011 34015     .     .     .     .     .20197415
    559 34033 10001 10003 34011 34015     .     .     .     .    .014636617
    569 34033 10001 10003 34011 34015     .     .     .     .    .016581196
    570 34033 10001 10003 34011 34015     .     .     .     .    .034968823
    571 34033 10001 10003 34011 34015     .     .     .     .     .19939888
    578 34033 10001 10003 34011 34015     .     .     .     .  .00024615144
    581 34033 10001 10003 34011 34015     .     .     .     .     .09488098
    582 34033 10001 10003 34011 34015     .     .     .     .     .09867228
    592 34033 10001 10003 34011 34015     .     .     .     .     .04531752
    end
    format %tmMonth_CCYY date

    I have a monthly panel dataset on counties in the US. Fips identifies a county with smoke being a variable I am investigating. The variables fipsneighbor1 - fipsneighbor8 give me the fips code of neighbouring counties. What I want to do is generate a variable that calculates the average of smoke of all adjacent counties, i.e. for the county with fips = 10001 I would have a variable adjsmoke equal to the average smoke of the adjacent fips codes 10003 10005 24011 24029 24035 34009 34011 34033 on that particular date.

    In terms of why my neighbouring fips code are like this for explanation purposes I had a long data set (shown below)

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input long(fips fipsneighbor)
    1001  1021
    1001  1047
    1001  1051
    1001  1085
    1001  1101
    1003  1025
    1003  1053
    1003  1097
    1003  1099
    1003  1129
    1003 12033
    1005  1011
    1005  1045
    1005  1067
    1005  1109
    1005  1113
    1005 13061
    1005 13239
    1005 13259
    end
    which I reshaped into wide format using the following code

    Code:
    bysort fips (fipsneighbor) : gen id = sum(fipsneighbor!= fipsneighbor[_n-1])
    reshape wide fipsneighbor , i(fips) j(id)
    In order to produce a wide dataset (shown below) which I merged with my main dataset.

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input long(fips fipsneighbor1 fipsneighbor2 fipsneighbor3 fipsneighbor4 fipsneighbor5 fipsneighbor6 fipsneighbor7 fipsneighbor8 fipsneighbor9 fipsneighbor10 fipsneighbor11 fipsneighbor12 fipsneighbor13 fipsneighbor14)
    1001 1021 1047  1051  1085  1101     .     .     .     . . . . . .
    1003 1025 1053  1097  1099  1129 12033     .     .     . . . . . .
    1005 1011 1045  1067  1109  1113 13061 13239 13259     . . . . . .
    1007 1021 1065  1073  1105  1117  1125     .     .     . . . . . .
    1009 1043 1055  1073  1095  1115  1127     .     .     . . . . . .
    1011 1005 1087  1101  1109  1113     .     .     .     . . . . . .
    1013 1035 1039  1041  1085  1099  1131     .     .     . . . . . .
    1015 1019 1029  1055  1115  1121     .     .     .     . . . . . .
    1017 1081 1111  1123 13145 13285     .     .     .     . . . . . .
    1019 1015 1029  1049  1055 13055 13115 13233     .     . . . . . .
    1021 1001 1007  1037  1047  1051  1105  1117     .     . . . . . .
    1023 1025 1091  1119  1129 28023 28075 28153     .     . . . . . .
    1025 1003 1023  1091  1099  1129  1131     .     .     . . . . . .
    1027 1029 1037  1111  1121  1123     .     .     .     . . . . . .
    1029 1015 1019  1027  1111  1121 13045 13143 13233     . . . . . .
    The reason why I included this is because I feel the way I have shown the neighbouring fips code of a county is the reason I am having issues.

    Thanks in advance for any guidance.

  • #2
    I have figured out a solution so no need to answer this

    Comment

    Working...
    X