Hello everyone,
I do not know how to calculate a variable, which is based on a lasso panel regression.
The Variable is based on the following paper:
Avramov, Kaplanski, and Subrahmanyam (2020): "Anchoring on Past Fundamentals"
The authors write: "The FDI index is calculated every month from all available data up to that month
using the standard least absolute shrinkage and selection (LASSO) procedure of Tibshirani
(1996). In particular, consider month J. We run a LASSO panel regression of monthly stock
returns realized up to month J on previous-months’ deviations. Slope coefficients from the
panel regression reflect sources of both time-series and cross-sectional return predictability
from deviation variables. FDI is computed as the fitted value of the panel regression using
time J realizations of deviation variables."
Furthermore, the authors write: "LASSO is implemented via Python module LassoLarsIC, with a lambda penalty parameter to minimize
the BIC information criterion."
Because I never worked with Python, I try to replicate the FDI index in Stata16.
The following is a data example of my unbalanced panel data, where
permno = firm identifier
ret = return in month t of firm k
ym = year-month identifier
var1 - var118 = exogenous variables (in the data example I only show var1 - var11)
The authors call the exogenous variables "deviations" because they are calulated as deviations from prior accounting data. The deviations are calculated as cross-sectional percentiles in a given month.
I hope someone can help me with the lasso panel regression stated above.
I think I need some kind of rolling lasso panel regression because the authors only use exogenous variables from the past to not have a look-ahead bias.
There are also many missing variables. The number of observations of the exogenous variables reach from 10,000 to 2,000,000.
Best regards,
Steven
I do not know how to calculate a variable, which is based on a lasso panel regression.
The Variable is based on the following paper:
Avramov, Kaplanski, and Subrahmanyam (2020): "Anchoring on Past Fundamentals"
The authors write: "The FDI index is calculated every month from all available data up to that month
using the standard least absolute shrinkage and selection (LASSO) procedure of Tibshirani
(1996). In particular, consider month J. We run a LASSO panel regression of monthly stock
returns realized up to month J on previous-months’ deviations. Slope coefficients from the
panel regression reflect sources of both time-series and cross-sectional return predictability
from deviation variables. FDI is computed as the fitted value of the panel regression using
time J realizations of deviation variables."
Furthermore, the authors write: "LASSO is implemented via Python module LassoLarsIC, with a lambda penalty parameter to minimize
the BIC information criterion."
Because I never worked with Python, I try to replicate the FDI index in Stata16.
The following is a data example of my unbalanced panel data, where
permno = firm identifier
ret = return in month t of firm k
ym = year-month identifier
var1 - var118 = exogenous variables (in the data example I only show var1 - var11)
The authors call the exogenous variables "deviations" because they are calulated as deviations from prior accounting data. The deviations are calculated as cross-sectional percentiles in a given month.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double permno float ym double ret float(var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11) 10001 331 8.33333358168602 . .08778143 . .25148198 .02637777 . .13633068 .50901943 . . .27258027 10001 332 -2.230769209563732 . .09192546 . .25493273 .029166667 . .13260457 .50795454 . . .2702089 10001 333 1.9999999552965164 . .0924282 . .25499412 .030060606 . .12838341 .5129731 . . .26795053 10001 334 -2.9411764815449715 . .04977489 . .3070353 .0360944 . .4903027 .14438382 . . .4795017 10001 335 -3.353535383939743 . .04934292 . .3090301 .03162961 . .4919071 .14459734 . . .4878597 10001 336 6.382978707551956 . .05675923 . .3243317 .03350084 . .5117344 .1591724 . . .52232635 10001 337 7.999999821186066 . . . . . . . . . . . 10001 338 -7.629629969596863 . .8717818 . .4917102 .939869 . .4916268 .7178662 . . .52687186 10001 339 3.0612245202064514 . .8788185 . .4997748 .9458584 . .490991 .7567137 . . .5404236 10001 340 1.9801979884505272 . .9152083 . .6039018 .8686937 . .53977406 .7808341 . . .5277962 10001 341 -1.203883532434702 . .9120529 . .6102285 .8653846 . .5450378 .7800528 . . .5274048 10001 342 2.9999999329447746 . .9156533 . .6166743 .8687868 . .5581564 .7901952 . . .53111935 10001 343 2.912621386349201 . .2231749 . .03380589 .029767234 . .52227837 .9076075 . . .4080688 10001 344 -2.1132076159119606 . .22533172 . .03647286 .02990983 . .52528214 .9076122 . . .4088542 10001 345 3.9215687662363052 . .22916143 . .03790938 .03117836 . .5351021 .9041902 . . .3916591 10001 346 0 . .12903225 . .04856705 .05915304 . .7506862 .8308304 . . .7017002 10001 347 -2.1132076159119606 . .12931667 . .04966238 .05572893 . .744149 .8251594 . . .6958718 10001 348 1.9607843831181526 . .13986014 . .05959752 .05421053 . .731956 .8194842 . . .6840873 10001 349 3.8461539894342422 . . . . . . . . . . . 10001 350 1.7777778208255768 . .9203105 . .27206385 .9485208 . .6455606 .52442396 . . .6149083 10001 351 7.407407462596893 . .9241877 . .26810935 .9496738 . .6425178 .56118923 . . .6144165 10001 352 -3.448275849223137 . .9014828 . .6707317 .9097301 . .59421295 .6401974 . . .5600534 10001 353 1.7142856493592262 . .8977046 . .6707774 .9054267 . .595397 .6408827 . . .56233424 10001 354 3.57142873108387 . .895193 . .6732283 .910596 . .59563637 .63517 . . .550384 10001 355 27.586206793785095 . .2030888 . .6678043 .0584809 . .6485844 .6143384 . . .58198404 10001 356 -2.7027027681469917 . .20237795 . .669571 .0605161 . .6509125 .6136621 . . .5823068 10001 357 7.042253762483597 . .2021699 . .6703169 .06020942 . .6500608 .6083471 . . .5776586 10001 358 3.9473682641983032 . .1091703 . .3634511 .05717593 . .8114097 .2470211 . . .7247395 10001 359 3.7974681705236435 . .10144927 . .3673103 .05024088 . .808043 .24443434 . . .7243935 10001 360 -1.8518518656492233 . .10795455 . .3648827 .05533172 . .7946747 .2458011 . . .7136831 10001 361 -.6289307959377766 . .7725258 . .4955958 .8823374 . .7749187 .29238844 . . .6972287 10001 362 1.2658228166401386 . .7831681 . .4950448 .8898264 . .7760532 .29151732 . . .6995039 10001 363 0 . .8059105 . .49600375 .9043729 . .7775055 .3145853 . . .7024482 10001 364 -1.2658228166401386 . .7033281 . .7646924 .765256 . .7769286 .3990262 . . .6999771 10001 365 1.4102564193308353 . .6984615 . .7619155 .7635104 . .7714286 .3954181 . . .7004076 10001 366 2.5641025975346565 . .6961236 . .7622795 .7612558 . .7688279 .3866602 . . .7023211 10001 367 -5.000000074505806 . .2318458 . .39251685 .08222433 . .7414087 .8596326 . . .6658122 10001 368 4.078947380185127 . .2385536 . .3920715 .08692596 . .7428023 .8579057 . . .66391 10001 369 -1.2820512987673283 . .23649557 . .390492 .0857488 . .7513621 .8571429 . . .670778 10001 370 0 . .12779221 . .3455462 .04157907 . .832258 .6638889 . . .7518332 10001 371 .129870162345469 . .12590486 . .349829 .0397952 . .8330953 .6677427 . . .7550834 10001 372 1.315789483487606 . .14263804 . .3635623 .04036494 . .8292269 .6525796 . . .7550244 10001 373 1.2987012974917889 . .9039834 . .3021132 .9499068 . .8056769 .2327791 . . .7333681 10001 374 -1.1538460850715637 . .9099488 . .3033254 .9544132 . .8097839 .23317307 . . .7359791 10001 375 3.9473682641983032 . .9225875 . .3062748 .9594756 . .8068209 .2415014 . . .7372723 10001 376 0 . .8351704 . .6531073 .7243368 . .755377 .7237594 . . .6949842 10001 377 7.848101109266281 . .8336315 . .6587731 .7272099 . .7548326 .7170888 . . .6927412 10001 378 -3.57142873108387 . .8339974 . .6647128 .7366658 . .7461954 .7047664 . . .6763534 10001 379 13.580246269702911 . .2402278 . .3927181 .09605048 . .776123 .8441047 . . .720531 10001 380 1.3043479062616825 . .24 . .3913832 .0985199 . .7690844 .8447248 . . .7129902 10001 381 13.04347813129425 . .23054293 . .388535 .0911271 . .7637621 .8398474 . . .7053698 10001 382 13.461539149284363 . .09192708 . .55938435 .04649533 . .7214337 .1715743 . . .6755393 10001 383 -.677966047078371 . .08654583 . .56074977 .04202067 . .7165484 .1704649 . . .6731333 10001 384 -5.17241396009922 . .09059776 . .5601648 .04347826 . .7064062 .1869107 . . .6673985 10001 385 -20.000000298023224 . .8529324 . .3766945 .8810281 . .620699 .54652995 . . .6122821 10001 386 8.181818574666977 . .8568006 . .3814988 .8912164 . .6182308 .5452398 . . .6093567 10001 387 1.0638297535479069 . .862766 . .372044 .8972896 . .5998043 .5750708 . . .5851661 10001 388 1.0526316240429878 . .816023 . .5458515 .788785 . .42517415 .6882966 . . .3956372 10001 389 -.7708333432674408 . .8090062 . .54062074 .7845048 . .4231504 .6857603 . . .3937044 10001 390 6.382978707551956 . .8033723 . .53592885 .7888427 . .4277078 .700921 . . .396299 10001 391 3.999999910593033 . .21289474 . .3406185 .7768576 . .3158151 .6295428 . . .1831706 10001 392 16.596153378486633 . .21553297 . .3418567 .7766581 . .3184775 .6283391 . . .18489523 10001 393 -2.500000037252903 . .2166982 . .3336522 .776482 . .3182045 .625693 . . .19039656 10001 394 -1.7094017937779427 . .8828875 . .5137678 .08055101 . .4696318 .9530527 . . .4146621 10001 395 -1.513043511658907 . .8780611 . .51944566 .07709802 . .4687062 .9535931 . . .4133155 10001 396 0 . .8721781 . .5356444 .08510638 . .4682841 .9535996 . . .4205085 10001 397 1.785714365541935 . .8107558 . .6103299 .8791037 . .6084273 .19989683 . . .5045942 10001 398 1.10526317730546 . .8125802 . .6115777 .8859589 . .6043695 .2043946 . . .5029465 10001 399 7.017543911933899 . .732983 . .4930202 .1869201 . .6403428 .25659364 . . .5394679 10001 400 -.8196720853447914 . .7252451 . .4834854 .17571175 . .6406463 .25498796 . . .53512573 10001 401 10.247933864593506 . .7169949 . .4789735 .17096846 . .6388262 .25261095 . . .53098106 10001 402 -.7575757801532745 . . . . . . . . . . . 10001 403 -3.0534351244568825 . . . . . . . . . . . 10001 404 6.614173203706741 . .1915459 . .791863 .6659355 . .6567768 .2089004 . . .53916174 10001 405 2.985074557363987 . .1863417 . .8022522 .6606033 . .6647031 .20572206 . . .54448396 10001 406 -1.4492753893136978 . .3585495 . .8904518 .07094521 . .59419644 .2781955 . . .4932079 10001 407 9.117647260427475 . .3512875 . .8911036 .06638024 . .59339935 .284869 . . .4887837 10001 408 -4.76190485060215 . .3698037 . .8827002 .07482993 . .5881406 .28527132 . . .4938735 10001 409 0 . .8539604 . .803243 .862274 . .47598475 .2022938 . . .4102063 10001 410 -.4285714589059353 . .8538813 . .800298 .8724934 . .4791434 .20017163 . . .4093635 10001 411 -14.492753148078918 . .852019 . .7893194 .8764744 . .482562 .2033791 . . .4075349 10001 412 6.779661029577255 . .566582 . .677537 .1640706 . .3557346 .7231303 . . .3080208 10001 413 10.730158537626266 . .56079686 . .6779831 .16110425 . .35766885 .7205674 . . .3081599 10001 414 7.246376574039459 . .55985576 . .6852086 .15416127 . .3639576 .7317177 . . .3155028 10001 415 -2.7027027681469917 . . . . . . . . . . . 10001 416 3.8333334028720856 . .06681716 . .4686209 .1655242 . .05528053 .4019044 . . .9279869 10001 417 -5.4054055362939835 . .06616962 . .47560975 .1606895 . .0514066 .40011695 . . .9298511 10001 418 -4.285714402794838 . .18424566 . .6567457 .09182183 . .671564 .3591031 . . .9077471 10001 419 -3.3432837575674057 . .18503937 . .6563158 .09128482 . .6691688 .3599788 . . .9098562 10001 420 -3.125 . .188203 . .6738095 .10289247 . .658371 .3442873 . . .898957 10001 421 -2.6209676638245583 . .6641963 . .6045765 .5909932 . .7194169 .33770955 . . .8801778 10001 422 .6376811303198338 . .6738598 . .6017009 .603777 . .7130095 .3441454 . . .8735735 10001 423 0 . .6660746 . .5920513 .6085845 . .7068611 .3627398 . . .8677686 10001 424 5.000000074505806 . .3189178 . .3729131 .6863327 . .7466905 .28598356 . . .6089491 10001 425 6.031746044754982 . .31415835 . .3720496 .6857392 . .7479486 .28095645 . . .6082051 10001 426 0 . .3069998 . .3770256 .6806196 . .7396483 .2711803 . . .6052966 10001 427 -3.030303120613098 . . . . . . . . . . . 10001 428 4.374999925494194 . .2111349 . .11854 .7231737 . .7101398 .6795135 . . .6740028 10001 429 -3.030303120613098 . .20350404 . .1131872 .7407407 . .7124835 .6691309 . . .6635936 10001 430 9.375 . .5987985 . .4607222 .10689293 . .7370875 .4209894 . . .6853063 end format %tm ym
I hope someone can help me with the lasso panel regression stated above.
I think I need some kind of rolling lasso panel regression because the authors only use exogenous variables from the past to not have a look-ahead bias.
There are also many missing variables. The number of observations of the exogenous variables reach from 10,000 to 2,000,000.
Best regards,
Steven
Comment