Hi everyone,
A few days ago i made a post and some of my questions answered very well.
But there's still a lil bit of confusion in Fixed Effect Model particularly F-test for Individual Effect Dummies (testparm) with Fixed Effect Robust Standard Error.
So here it is:
After using vce(robust) option for xtreg, fe command, i couldn't get my F-test (joint test) for my individual effect dummies (u_i) that i included in my model. I know that stata omits it because someone explained it to me. But, i still want to report it on my paper, because i think it could be necesarry (or it couldn't) to report F test for u_i, to provide the reasons why i included it in my model.
I don't know is it a right assumption or not, but i assumed that we could choose to pooled or not to pooled the data, to include or not to include individiual and time effect based on these F test (F test, for u_i (time invariant effect) and δ_t (for time variant effect)).
So my question is:
How to conduct F test (that omits) for individual effect (u_i) in fixed effect with robust standard error (xtreg, fe vce(robust))?
here is how i did fixed effect model with robust SE. i still could do F test for time effect (that i assumed as δ_t or dummy variables for time effect) by doing testparm over my year dummy variables.
i've got an idea about using the reg command with addition of individual and time dummies. But because i read that in reg. command, robust and cluster(id) options using a different method, so if anybody could confirm which one should i choose and is it a right (or wrong) thing to do?
Thank you.
A few days ago i made a post and some of my questions answered very well.
But there's still a lil bit of confusion in Fixed Effect Model particularly F-test for Individual Effect Dummies (testparm) with Fixed Effect Robust Standard Error.
So here it is:
After using vce(robust) option for xtreg, fe command, i couldn't get my F-test (joint test) for my individual effect dummies (u_i) that i included in my model. I know that stata omits it because someone explained it to me. But, i still want to report it on my paper, because i think it could be necesarry (or it couldn't) to report F test for u_i, to provide the reasons why i included it in my model.
I don't know is it a right assumption or not, but i assumed that we could choose to pooled or not to pooled the data, to include or not to include individiual and time effect based on these F test (F test, for u_i (time invariant effect) and δ_t (for time variant effect)).
So my question is:
How to conduct F test (that omits) for individual effect (u_i) in fixed effect with robust standard error (xtreg, fe vce(robust))?
here is how i did fixed effect model with robust SE. i still could do F test for time effect (that i assumed as δ_t or dummy variables for time effect) by doing testparm over my year dummy variables.
Code:
. xtreg Y X1 X2 i.year, fe vce(robust) Fixed-effects (within) regression Number of obs = 222 Group variable: year Number of groups = 74 R-sq: Obs per group: within = 0.5916 min = 3 between = 0.6470 avg = 3.0 overall = 0.6243 max = 3 F(4,73) = 100.72 corr(u_i, Xb) = 0.1511 Prob > F = 0.0000 (Std. Err. adjusted for 74 clusters in id) ------------------------------------------------------------------------------ | Robust Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X1 | .8808422 .1626354 5.42 0.000 .5567103 1.204974 X2 | 16.65939 13.84521 1.20 0.233 -10.93408 44.25285 | year | 2017 | -.5542752 .3520155 -1.57 0.120 -1.255841 .1472906 2018 | -2.224763 .567658 -3.92 0.000 -3.356104 -1.093422 | _cons | -.1550369 1.315367 -0.12 0.906 -2.776559 2.466485 -------------+---------------------------------------------------------------- sigma_u | 2.9370361 sigma_e | 2.7763652 rho | .52809954 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . testparm i.year ( 1) 2017.year = 0 ( 2) 2018.year = 0 F( 2, 73) = 7.83 Prob > F = 0.0008
Code:
. reg Y X1 X2 i.id i.year, vce(robust) Linear regression Number of obs = 222 F(77, 144) = 44.20 Prob > F = 0.0000 R-squared = 0.8589 Root MSE = 2.7764 ------------------------------------------------------------------------------ | Robust Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X1 | .8808422 .166491 5.29 0.000 .5517603 1.209924 X2 | 16.65939 12.42937 1.34 0.182 -7.908193 41.22696 | id | APLN | .2947118 1.225192 0.24 0.810 -2.126972 2.716396 ASDM | 1.050584 1.462409 0.72 0.474 -1.839978 3.941145 ASII | 2.8694 2.413574 1.19 0.236 -1.90121 7.64001 ASJT | 2.31474 1.607534 1.44 0.152 -.8626728 5.492152 ASMI | 4.015512 1.669058 2.41 0.017 .716494 7.314531 ASRI | -3.831059 .9604417 -3.99 0.000 -5.729445 -1.932674 ASRM | 2.211627 1.556897 1.42 0.158 -.8656974 5.288952 BACA | -.0261848 .7748567 -0.03 0.973 -1.557747 1.505378 BAPA | 1.378856 1.827293 0.75 0.452 -2.232926 4.990638 BBCA | .0173037 .6407342 0.03 0.978 -1.249156 1.283763 BBMD | .3834314 .738184 0.52 0.604 -1.075645 1.842507 BBNI | .2716186 .7533377 0.36 0.719 -1.21741 1.760647 BBRI | .2827238 .6037333 0.47 0.640 -.9106003 1.476048 BBTN | -.077315 .8124557 -0.10 0.924 -1.683195 1.528565 BCIP | 2.590771 1.405957 1.84 0.067 -.1882089 5.369752 BDMN | .4528766 .9091776 0.50 0.619 -1.344181 2.249934 BEST | -2.037454 1.330063 -1.53 0.128 -4.666422 .5915147 BINA | -.1135588 .7325616 -0.16 0.877 -1.561522 1.334404 BJBR | .561522 .830212 0.68 0.500 -1.079454 2.202498 BJTM | .7062759 .9025418 0.78 0.435 -1.077666 2.490217 BKSL | -1.372539 .6198285 -2.21 0.028 -2.597676 -.1474013 BMRI | .3669541 .8332335 0.44 0.660 -1.279994 2.013903 BNBA | .3175581 .7390014 0.43 0.668 -1.143134 1.77825 BNGA | .2506866 .7081542 0.35 0.724 -1.149033 1.650406 BNII | -.0686958 .7415254 -0.09 0.926 -1.534376 1.396985 BOLT | 2.443337 4.159148 0.59 0.558 -5.777531 10.66421 BRAM | 2.319903 1.84863 1.25 0.212 -1.334053 5.973858 BSDE | 1.708504 1.436532 1.19 0.236 -1.130908 4.547917 COWL | -4.949813 1.340089 -3.69 0.000 -7.598599 -2.301026 CTRA | -.0605993 .8110554 -0.07 0.941 -1.663711 1.542513 DART | -1.910334 .9455116 -2.02 0.045 -3.779209 -.0414595 DILD | .4385749 .690611 0.64 0.526 -.9264696 1.803619 DMAS | -.8064493 1.466592 -0.55 0.583 -3.705279 2.09238 DUTI | 2.279153 .8200434 2.78 0.006 .6582761 3.900031 FMII | -5.050991 3.634907 -1.39 0.167 -12.23566 2.133676 GMTD | 1.609945 .7361016 2.19 0.030 .154985 3.064905 GPRA | .7070048 .9660833 0.73 0.465 -1.202531 2.616541 INDS | .3487059 2.395833 0.15 0.884 -4.386837 5.084249 JRPT | 4.44845 1.494431 2.98 0.003 1.494595 7.402305 JTPE | .834028 3.572804 0.23 0.816 -6.227887 7.895942 KIJA | -2.493057 1.432208 -1.74 0.084 -5.323924 .3378107 LINK | 5.043667 4.371182 1.15 0.250 -3.596301 13.68364 LPCK | 6.240876 6.955493 0.90 0.371 -7.507178 19.98893 LPGI | 1.179102 .8410096 1.40 0.163 -.4832171 2.84142 LPKR | .7737229 1.459914 0.53 0.597 -2.111906 3.659352 MARI | 4.511691 6.4431 0.70 0.485 -8.22358 17.24696 MDIA | 3.637022 4.998187 0.73 0.468 -6.242271 13.51631 MDLN | -5.018098 2.952339 -1.70 0.091 -10.85362 .8174219 MEGA | 3.629563 3.339883 1.09 0.279 -2.971967 10.23109 MKPI | 5.926182 2.035153 2.91 0.004 1.903549 9.948814 MMLP | .8126784 2.50436 0.32 0.746 -4.137377 5.762734 MNCN | 1.6835 2.823976 0.60 0.552 -3.898301 7.265301 MREI | 2.293249 1.157294 1.98 0.049 .0057712 4.580727 MTLA | 3.542054 1.936665 1.83 0.069 -.2859105 7.370019 MYRX | -2.469469 .7999408 -3.09 0.002 -4.050612 -.8883258 NISP | .0944043 .7654037 0.12 0.902 -1.418474 1.607282 PLIN | 1.818417 3.990349 0.46 0.649 -6.068808 9.705643 PNBN | -.5133411 .6766237 -0.76 0.449 -1.850739 .8240564 PNIN | 1.555931 .8908233 1.75 0.083 -.2048478 3.31671 PPRO | -7.645823 1.93914 -3.94 0.000 -11.47868 -3.812969 PWON | .827668 1.376719 0.60 0.549 -1.89352 3.548856 RDTX | 1.647971 1.343093 1.23 0.222 -1.006753 4.302695 RODA | .2733828 1.023854 0.27 0.790 -1.750341 2.297106 SCBD | 2.449009 .9853489 2.49 0.014 .5013928 4.396625 SCMA | 11.37837 6.599241 1.72 0.087 -1.66552 24.42227 SDRA | -.2775776 .5947717 -0.47 0.641 -1.453188 .8980333 SMDM | -.2651635 .9403621 -0.28 0.778 -2.12386 1.593533 SMRA | -.8117748 .9704148 -0.84 0.404 -2.729872 1.106323 SMSM | 7.956638 7.70801 1.03 0.304 -7.278821 23.1921 TARA | -1.243613 1.169836 -1.06 0.290 -3.555881 1.068655 TLKM | 4.399757 4.520706 0.97 0.332 -4.535757 13.33527 VINS | 2.005052 1.621869 1.24 0.218 -1.200693 5.210797 VIVA | -4.834313 4.09723 -1.18 0.240 -12.9328 3.264169 | year | 2017 | -.5542752 .4074146 -1.36 0.176 -1.359561 .2510102 2018 | -2.224763 .5223219 -4.26 0.000 -3.257171 -1.192354 | _cons | -1.037165 .6538399 -1.59 0.115 -2.329528 .2551992 ------------------------------------------------------------------------------ . testparm i.id ( 1) 2.id = 0 ( 2) 3.id = 0 ( 3) 4.id= 0 . . (to save the space) . (71) 72.id = 0 (72) 73.id = 0 (73) 74.id = 0 F( 73, 144) = 10.22 Prob > F = 0.0000 . testparm i.year ( 1) 2017.year = 0 ( 2) 2018.year = 0 F( 2, 144) = 9.39 Prob > F = 0.0001
Comment