I have 4 models (OLS, Fixed Effects, Random Effects and a Fixed Effect Differenced) which I have stored using the eststo command and am trying to use esttab to get certain scalars to be reported as an output table so that I can format the resulting table for an article. I am interested in the following scalars r2 df_2 F Sigma u,the Rho statistic and the standard errors of the estimates (SEE) or square root of mean squared errors (SRMSE).
The current code I'm using (which only gets me part of the way) is
I am unsure how to find the scalar equivalent to SEE, SRMSE, Rho, the actual F-test(model) and how to add stars to the F-test and Effect Test in the output. Please advise. Should I simply run a display after each model and record it so that I can edit the table manually or is there any easy way to get this using the scalar function?
Fixed/Random Effects Statistics Highlighted in Bold:
OLS Statistics Needed Highlighted in Bold
Apologies for the long post, I wanted to provide as much detail as possible. Many thanks in advance.
The current code I'm using (which only gets me part of the way) is
Code:
esttab, label mtitles scalars (F p_value df_r r2)
Fixed/Random Effects Statistics Highlighted in Bold:
Code:
. xtreg $ylist l.lnannualjobs d.pct_aanh pct_poverty pct_totaldegrees d.ln_empstable avgstateincentive, fe i(county) Fixed-effects (within) regression Number of obs = 555 Group variable: county Number of groups = 37 R-sq: Obs per group: within = 0.4762 min = 15 between = 0.9936 avg = 15.0 overall = 0.9787 max = 15 F(6,512) = 77.58 corr(u_i, Xb) = 0.9691 Prob > F = 0.0000 ----------------------------------------------------------------------------------- lnannualjobs | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- lnannualjobs | L1. | .5567163 .0347663 16.01 0.000 .4884142 .6250184 | pct_aanh | D1. | .0010539 .0020719 0.51 0.611 -.0030166 .0051243 | pct_poverty | .0129627 .003774 3.43 0.001 .0055482 .0203772 pct_totaldegrees | .0129081 .0067972 1.90 0.058 -.0004457 .0262619 | ln_empstable | D1. | .7517452 .0451105 16.66 0.000 .6631207 .8403697 | avgstateincentive | -2.518008 5.451199 -0.46 0.644 -13.22748 8.191461 _cons | 3.582079 .3671468 9.76 0.000 2.860779 4.303379 ------------------+---------------------------------------------------------------- sigma_u | .54256832 sigma_e | .13076773 rho | .94510027 (fraction of variance due to u_i) ----------------------------------------------------------------------------------- F test that all u_i=0: F(36, 512) = 5.14 Prob > F = 0.0000
Code:
reg $ylist $xlist if obs!=219 Source | SS df MS Number of obs = 591 -------------+---------------------------------- F(5, 585) = 213.57 Model | 592.562504 5 118.512501 Prob > F = 0.0000 Residual | 324.625907 585 .554916081 R-squared = 0.6461 -------------+---------------------------------- Adj R-squared = 0.6430 Total | 917.188411 590 1.55455663 Root MSE = .74493 ----------------------------------------------------------------------------------- lnannualjobs | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- pct_aanh | -.0086078 .0026004 -3.31 0.001 -.013715 -.0035006 pct_poverty | .01679 .0085872 1.96 0.051 -.0000755 .0336555 pct_totaldegrees | -.0146091 .0230061 -0.64 0.526 -.0597936 .0305755 ln_empstable | .8816694 .0474711 18.57 0.000 .7884349 .9749039 avgstateincentive | -30.33077 25.47656 -1.19 0.234 -80.36743 19.70589 _cons | .9807619 .9065059 1.08 0.280 -.7996406 2.761164 -----------------------------------------------------------------------------------
Comment