Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Predicting Population Mean from Sample mean

    Hello Statalisters

    I am using an unbalanced panel data that collects women's birth histories -- gives details on the number of kids, year of birth of a child.

    I also have data on women reporting either being sterilized or not and their year of sterilization even though the data was collected in 1992 and 1998. So I used the following code to create district level sterilization by year of sterilization (v316) and district indicator and whether a household reported either female or male sterilization (sterilzn_intens)

    Code:
    egen dist_sterilzn = total(sterilzn_intens), by (v316 districtia)
    I can plot the number of reported sterilizations by year from my sample. I have attached a twoway graph illustrating this.

    I can also get mean on number of women reportedly sterilized in each year (collected in 1992 or 1998). They were sampled to be representative of the state in the year of interview. I am collecting data on population in each district from all the years. Is there anyway I could predict population means using these sample means and general yearly population data?

    I had looked at a few examples given on stats stack: Estimate population mean from sample but since I don't have sterilization distribution at the state/regional level I can't use either methods mentioned.


    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float(newid year) int(yearoi districtia) float(sterilzn_intens dist_sterilzn) int pop91
     2316 1992 1992 219 1 50 2082
     2409 1992 1992 219 1 31 2082
    93739 1998 1999 219 0  0 2082
    93730 1998 1999 219 0  0 2082
     2516 1992 1992 219 1 35 2082
     2374 1992 1992 219 0  0 2082
     2538 1992 1992 219 0  0 2082
     2381 1992 1992 219 0  0 2082
     2349 1992 1992 219 0  0 2082
     2427 1992 1992 219 0  0 2082
     2434 1992 1992 219 0  0 2082
     2446 1992 1992 219 1  4 2082
    93725 1998 1999 219 0  0 2082
     2354 1992 1992 219 0  0 2082
     2476 1992 1992 219 0  0 2082
     2352 1992 1992 219 0  0 2082
     2469 1992 1992 219 0  0 2082
     2415 1992 1992 219 1 31 2082
     2370 1992 1992 219 1 31 2082
     4192 1992 1992 219 0  0 2082
     2415 1992 1992 219 1 31 2082
     2419 1992 1992 219 0  0 2082
     2416 1992 1992 219 1 21 2082
     2495 1992 1992 219 1 30 2082
     2405 1992 1992 219 1 15 2082
     2540 1992 1992 219 1 50 2082
     2517 1992 1992 219 0  0 2082
     2348 1992 1992 219 0  0 2082
     2406 1992 1992 219 1 21 2082
     2539 1992 1992 219 1 35 2082
     4216 1992 1992 219 0  0 2082
    93729 1998 1999 219 0  0 2082
     2346 1992 1992 219 1 50 2082
     2345 1992 1992 219 0  0 2082
     2313 1992 1992 219 1 35 2082
     2539 1992 1992 219 1 35 2082
     2526 1992 1992 219 0  0 2082
     2394 1992 1992 219 0  0 2082
     4217 1992 1992 219 1 21 2082
     2390 1992 1992 219 0  0 2082
    93718 1998 1999 219 1  4 2082
     2316 1992 1992 219 1 50 2082
     2348 1992 1992 219 0  0 2082
     2384 1992 1992 219 1 31 2082
     2357 1992 1992 219 1 31 2082
     2360 1992 1992 219 1 31 2082
     2537 1992 1992 219 1 16 2082
     2399 1992 1992 219 0  0 2082
     2505 1992 1992 219 1 50 2082
     2417 1992 1992 219 0  0 2082
     2533 1992 1992 219 0  0 2082
     4206 1992 1992 219 0  0 2082
    93722 1998 1999 219 1 15 2082
     2375 1992 1992 219 0  0 2082
     2368 1992 1992 219 0  0 2082
     2485 1992 1992 219 1 19 2082
     2477 1992 1992 219 1 25 2082
    93724 1998 1999 219 0  0 2082
     2460 1992 1992 219 1 50 2082
     2543 1992 1992 219 0  0 2082
     2477 1992 1992 219 1 25 2082
     2402 1992 1992 219 0  0 2082
     2340 1992 1992 219 0  0 2082
     2360 1992 1992 219 1 31 2082
     2450 1992 1992 219 1 31 2082
     2536 1992 1992 219 0  0 2082
     2486 1992 1992 219 0  0 2082
     2398 1992 1992 219 0  0 2082
     2459 1992 1992 219 1 31 2082
     2332 1992 1992 219 1 23 2082
     2371 1992 1992 219 1 50 2082
     2342 1992 1992 219 1 16 2082
     2491 1992 1992 219 1  5 2082
     2519 1992 1992 219 0  0 2082
     2400 1992 1992 219 0  0 2082
    93725 1998 1999 219 0  0 2082
     2488 1992 1992 219 1 35 2082
     2385 1992 1992 219 0  0 2082
     2374 1992 1992 219 0  0 2082
     2456 1992 1992 219 1 30 2082
     2496 1992 1992 219 0  0 2082
    93719 1998 1999 219 0  0 2082
     2359 1992 1992 219 1 19 2082
     2397 1992 1992 219 1 21 2082
     2494 1992 1992 219 0  0 2082
    93731 1998 1999 219 1  5 2082
     2504 1992 1992 219 1 10 2082
     2387 1992 1992 219 1 25 2082
     2405 1992 1992 219 1 15 2082
     2459 1992 1992 219 1 31 2082
     4218 1992 1992 219 0  0 2082
     2501 1992 1992 219 1 31 2082
     2333 1992 1992 219 0  0 2082
     2392 1992 1992 219 1 21 2082
     2331 1992 1992 219 1 21 2082
     2370 1992 1992 219 1 31 2082
     2435 1992 1992 219 0  0 2082
     2380 1992 1992 219 1 23 2082
     2477 1992 1992 219 1 25 2082
     2361 1992 1992 219 0  0 2082
    end
    label values year YEAR
    label def YEAR 1992 "1992", modify
    label def YEAR 1998 "1998", modify
    label values yearoi v007

    Thanks a lot.

    Click image for larger version

Name:	strata.png
Views:	3
Size:	70.9 KB
ID:	1553378
    Attached Files
Working...
X