Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • nlsur with cross-parameter constraints

    I want to estimate the following regression in Stata 14.2:
    Code:
    nlsur (y = {b0} + {b1}*x1 + {b2}*x2 + {c11}*{c11}*x1x1  + {c11}*{c12}*x1x2 + ({c12}*{c12}+{c22}*{c22})*x2x2)
    Unfortunately, paramters c11, c12 and c22 cannot be estimated:

    Code:
    -----------------------------------------------------------------------
           Equation |        Obs   Parms       RMSE      R-sq     Constant
    ----------------+------------------------------------------------------
     1            y |     21,619       6   885.5987    0.0108          c11
    -----------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
               y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             /b0 |  -.0000846     6.0229    -0.00   1.000    -11.80475    11.80458
             /b1 |   300.1579   23.19286    12.94   0.000     254.7008    345.6151
             /b2 |   93.08839   13.34411     6.98   0.000     66.93442    119.2424
            /c11 |          0  (constrained)
            /c12 |          0  (constrained)
            /c22 |          0  (constrained)
    ------------------------------------------------------------------------------
    I noticed that c11 and c12 can be estimated when I replace "{c11}*{c11}*x1x1" with "{c11}*x1x1".

    Do you have a suggestion? Is the nlsur command the appropriate command for what I'm trying to do?

    Thank you
    Stefan

  • #2
    It seems like Stata has a problem when coefficients are in the form of
    Code:
    {c11}*{c11}*x
    Does anyone have a hint whether the missing estimates for parameters c11, c12, and c22 are due to a convergence problem, or rather a syntax problem? The full estimation output is

    Code:
    Calculating NLS estimates...
    Iteration 0:  Residual SS =  1.70e+10
    Iteration 1:  Residual SS =  1.70e+10
    Iteration 2:  Residual SS =  1.70e+10
    Iteration 3:  Residual SS =  1.70e+10
    Calculating FGNLS estimates...
    Iteration 0:  Scaled RSS =     21619
    Iteration 1:  Scaled RSS =     21619
    Iteration 2:  Scaled RSS =     21619
    
    FGNLS regression
    -----------------------------------------------------------------------
           Equation |        Obs   Parms       RMSE      R-sq     Constant
    ----------------+------------------------------------------------------
     1            y |     21,619       6   885.5987    0.0108          c11
    -----------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
               y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             /b0 |  -.0000846     6.0229    -0.00   1.000    -11.80475    11.80458
             /b1 |   300.1579   23.19286    12.94   0.000     254.7008    345.6151
             /b2 |   93.08839   13.34411     6.98   0.000     66.93442    119.2424
            /c11 |          0  (constrained)
            /c12 |          0  (constrained)
            /c22 |          0  (constrained)
    ------------------------------------------------------------------------------
    Thank you in advance, Stefan

    Comment

    Working...
    X