Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Help!!! Convergence error in calculating of productivity by SFA - "Kumbhakar, S.C, 2015"

    Hi everyone,

    I am calculating total factor productivity by the SFA model in using STATA.

    When I run the TFP estimation, it gives this warning "convergence not achieved"
    Do you know the reasons for these errors? and how can I fix it?

    Thank you very much!

    Code:
    . matrix b1 = e(b)
    
    . sfmodel lny, prod dist(h) frontier($xvar_prod) usigmas(t) vsigmas()
    
    . sf_init, frontier(b1) usigmas(0 0) vsigmas(0)
    
    . ml max, difficult gtol(1e-5) nrtol(1e-5)
    
    initial:       log likelihood = -2429.7833
    rescale:       log likelihood = -2429.7833
    rescale eq:    log likelihood = -2429.7833
    Iteration 0:   log likelihood = -2429.7833  (not concave)
    Iteration 1:   log likelihood = -1588.3033  (not concave)
    .......
    Iteration 15997: log likelihood =  12249.385  (not concave)
    Iteration 15998: log likelihood =  12249.396  (not concave)
    Iteration 15999: log likelihood =  12249.407  (not concave)
    Iteration 16000: log likelihood =  12249.418  (not concave)
    convergence not achieved
    
                                                    Number of obs     =      1,920
                                                    Wald chi2(27)     =   6.49e+09
    Log likelihood =  12249.418                     Prob > chi2       =     0.0000
    
    ------------------------------------------------------------------------------
             lny |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    frontier     |
            lnx1 |  -.0032105    .001224    -2.62   0.009    -.0056094   -.0008116
            lnx2 |   .0008623   .0003733     2.31   0.021     .0001307    .0015939
            lnx3 |  -.0028025   .0008357    -3.35   0.001    -.0044404   -.0011645
            lnx4 |    1.12896   .0152639    73.96   0.000     1.099044    1.158877
            lnx5 |  -.1275546   .0151461    -8.42   0.000    -.1572404   -.0978689
               t |  -.0060357   .0006953    -8.68   0.000    -.0073984   -.0046729
           lnx12 |   .0000333   .0000956     0.35   0.728    -.0001541    .0002206
           lnx22 |  -.0000165   .0000175    -0.94   0.346    -.0000508    .0000178
           lnx32 |   .0000985   .0000693     1.42   0.155    -.0000373    .0002344
           lnx42 |   .0633521   .0078738     8.05   0.000     .0479198    .0787844
           lnx52 |   .0630039    .007834     8.04   0.000     .0476495    .0783583
              t2 |   .0001387   .0000163     8.52   0.000     .0001068    .0001706
        lnx1lnx2 |   .0000402   .0000403     1.00   0.319    -.0000388    .0001191
        lnx1lnx3 |   .0000817   .0000882     0.93   0.354    -.0000912    .0002547
        lnx1lnx4 |  -.0009159   .0003878    -2.36   0.018    -.0016759   -.0001559
        lnx1lnx5 |   .0009364   .0003786     2.47   0.013     .0001944    .0016784
           lnx1t |   .0000484   .0000177     2.73   0.006     .0000137    .0000832
        lnx2lnx3 |  -.0000165   .0000306    -0.54   0.589    -.0000764    .0000434
        lnx2lnx4 |   .0002069    .000124     1.67   0.095    -.0000361    .0004499
        lnx2lnx5 |  -.0002607   .0001251    -2.08   0.037     -.000506   -.0000154
           lnx2t |  -9.77e-06   5.64e-06    -1.73   0.083    -.0000208    1.29e-06
        lnx3lnx4 |  -.0008239   .0002539    -3.24   0.001    -.0013215   -.0003262
        lnx3lnx5 |   .0007864   .0002525     3.11   0.002     .0002915    .0012814
           lnx3t |   .0000393   .0000118     3.33   0.001     .0000162    .0000625
        lnx4lnx5 |   -.063212    .007843    -8.06   0.000    -.0785839     -.04784
           lnx4t |  -.0028864   .0003574    -8.08   0.000    -.0035868    -.002186
           lnx5t |    .002875   .0003556     8.08   0.000      .002178     .003572
           _cons |   .8317727   .0163096    51.00   0.000     .7998064     .863739
    -------------+----------------------------------------------------------------
    usigmas      |
               t |  -2.543044   .0902784   -28.17   0.000    -2.719986   -2.366101
           _cons |  -4.848508          .        .       .            .           .
    -------------+----------------------------------------------------------------
    vsigmas      |
           _cons |  -15.37606   .0874759  -175.77   0.000    -15.54751   -15.20461
    ------------------------------------------------------------------------------
    convergence not achieved
    r(430);
    
    
    . sf_predict, bc(bc2_h) jlms(jlms2_h) marginal
    Last edited by Louis Nguyen; 06 May 2020, 21:49.

  • #2
    There are many entries in the pdf documentation on maximum likelihood estimation. There are several things you can try to get convergence. If they don't work, you might try a simpler model and work up.

    Comment


    • #3
      Originally posted by Phil Bromiley View Post
      There are many entries in the pdf documentation on maximum likelihood estimation. There are several things you can try to get convergence. If they don't work, you might try a simpler model and work up.
      Thank you very much for your support. I will check it.

      Comment


      • #4
        hi, i m using sfmodel command for Kumbhakar , Lien and Hardaker(2014) model from practitioner' s guide book.This model is a panel data model and estimated with sfmodel.But at the end of the book sfmodel is explained for cross section models and i m not sure if sfmodel is appropriate option for panel data.How can i find help file or application for sfmodel?
        Last edited by ziqie gny; 17 Jan 2021, 20:40.

        Comment


        • #5
          You implement the estimation procedure by Kumbhakar, Lien and Hardaker (2014) in three steps. The first step estimates a panel fixed effects or random effects model. The second and third steps estimate residual inefficiency and persistent efficiency from the error component obtained in the first step - so you have a panel estimator in the first step.

          Comment


          • #6
            thank you so much for your help.

            Comment

            Working...
            X