Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Betas greater than one

    Hi Statalist member,

    I have run a regression of cash flow volatility (s_oina_v1_w01) on several independent variables. The coefficients of the independent variables are much greater than 1. After a while searching for the reasons, this issue might be caused by multicollinearity. I use vif command to check and found that if I exclude year fixed effect, the vif will decrease to normal. However, the betas of independent variables are still greater than 1. The question is: can betas be greater than 1 or they should be bounded between 0 and 1?

    My first model including year fixed effects
    Code:
    reg s_oina_v1_w01 vc pe $CONTROLSF i.fyear if nomiss==1, cluster (gvkey_n)
    
    Linear regression                               Number of obs     =     42,240
    F(64, 5187)       =      55.64
    Prob > F          =     0.0000
    R-squared         =     0.3537
    Root MSE          =     23.421
    
    (Std. Err. adjusted for 5,188 clusters in gvkey_n)
    
    Robust
    s_oina_v1~01       Coef.   Std. Err.      t    P>t     [95% Conf. Interval]
    
    vc     2.60776   .5108771     5.10   0.000     1.606225    3.609294
    pe    -.431211   .4109789    -1.05   0.294    -1.236903    .3744809
    MB2_w01    2.588564   .1564188    16.55   0.000     2.281917     2.89521
    fsize_w01   -2.044109     .13061   -15.65   0.000    -2.300159   -1.788058
    tang_w01   -4.856372   .6371705    -7.62   0.000    -6.105495    -3.60725
    prof2_w01    -23.1196   1.482164   -15.60   0.000    -26.02527   -20.21394
    LnRnD_w01      22.105   1.338913    16.51   0.000     19.48017    24.72984
    capex_w01    15.53585   2.653995     5.85   0.000      10.3329     20.7388
    abne_w01    1.614974   .6722279     2.40   0.016     .2971238    2.932824
    indlev_w01     -4.6235   .6954019    -6.65   0.000    -5.986781   -3.260219
                
    fyear
    1963     -2.70082   1.855219    -1.46   0.146    -6.337831    .9361915
    1964     -4.36412    2.44979    -1.78   0.075    -9.166741    .4385007
    1965    -3.483502   2.541331    -1.37   0.171    -8.465583    1.498578
    1966    -2.861024   2.190433    -1.31   0.192    -7.155195    1.433147
    1967    -3.777086   2.748357    -1.37   0.169    -9.165025    1.610852
    1968    -1.183331   3.818591    -0.31   0.757    -8.669378    6.302716
    1969    -4.279388   2.535129    -1.69   0.091     -9.24931    .6905337
    1970    -2.396924   1.959319    -1.22   0.221    -6.238015    1.444168
    1971    -5.224563   2.179666    -2.40   0.017    -9.497626      -.9515
    1972    -5.423982   2.626562    -2.07   0.039    -10.57315   -.2748138
    1973    -3.160456   2.739316    -1.15   0.249    -8.530669    2.209758
    1974    -1.109184   2.648728    -0.42   0.675    -6.301808    4.083439
    1975    -1.772796    2.62446    -0.68   0.499    -6.917842    3.372251
    1976    -1.968919   2.604779    -0.76   0.450    -7.075383    3.137546
    1977    -3.536893   2.602726    -1.36   0.174    -8.639332    1.565547
    1978    -3.240465   2.626672    -1.23   0.217    -8.389849     1.90892
    1979     -3.14485   2.587022    -1.22   0.224    -8.216504    1.926803
    1980    -3.663743   2.586793    -1.42   0.157    -8.734947    1.407461
    1981    -4.014471    2.67717    -1.50   0.134    -9.262852     1.23391
    1982    -4.120776   2.651059    -1.55   0.120    -9.317968    1.076416
    1983    -5.077192   2.616589    -1.94   0.052    -10.20681    .0524262
    1984    -1.935351   2.664314    -0.73   0.468    -7.158529    3.287827
    1985     -2.99127   2.628142    -1.14   0.255    -8.143537    2.160997
    1986    -1.640733   2.643156    -0.62   0.535    -6.822432    3.540965
    1987    -1.961486   2.624165    -0.75   0.455    -7.105956    3.182984
    1988      -2.4146   2.619251    -0.92   0.357    -7.549435    2.720235
    1989     -2.59247   2.617404    -0.99   0.322    -7.723685    2.538745
    1990    -1.634035   2.621029    -0.62   0.533    -6.772357    3.504287
    1991    -2.309193   2.621048    -0.88   0.378    -7.447551    2.829166
    1992    -2.145213   2.631998    -0.82   0.415    -7.305038    3.014611
    1993    -4.298855   2.602566    -1.65   0.099    -9.400981    .8032715
    1994    -3.740801   2.596153    -1.44   0.150    -8.830355    1.348752
    1995     -2.85765   2.593843    -1.10   0.271    -7.942675    2.227376
    1996    -2.550483   2.595195    -0.98   0.326    -7.638159    2.537193
    1997    -2.886435   2.598277    -1.11   0.267    -7.980153    2.207284
    1998    -.6481403   2.612095    -0.25   0.804    -5.768947    4.472667
    1999    -1.143714   2.627518    -0.44   0.663    -6.294757    4.007328
    2000     2.853986   2.648816     1.08   0.281     -2.33881    8.046782
    2001     1.088894   2.631785     0.41   0.679    -4.070513    6.248301
    2002     .4298029   2.626765     0.16   0.870    -4.719764     5.57937
    2003    -3.096295   2.617106    -1.18   0.237    -8.226926    2.034336
    2004    -1.838908   2.626983    -0.70   0.484    -6.988901    3.311085
    2005    -2.909433   2.629826    -1.11   0.269       -8.065    2.246134
    2006    -1.747426   2.633339    -0.66   0.507     -6.90988    3.415028
    2007    -2.096727   2.643802    -0.79   0.428    -7.279694    3.086239
    2008     1.854633    2.66005     0.70   0.486    -3.360186    7.069451
    2009     2.525076   2.653766     0.95   0.341    -2.677423    7.727576
    2010     2.350179   2.672366     0.88   0.379    -2.888786    7.589143
    2011     1.023631   2.682469     0.38   0.703    -4.235139    6.282401
    2012      .217227   2.656954     0.08   0.935    -4.991522    5.425976
    2013    -3.136067   2.644907    -1.19   0.236    -8.321199    2.049064
    2014     -.691762   2.678946    -0.26   0.796    -5.943625    4.560101
    2015     .3019233   2.697211     0.11   0.911    -4.985747    5.589594
    2016     .1598025   2.719114     0.06   0.953    -5.170807    5.490412
                
    _cons     24.0461   2.597978     9.26   0.000     18.95297    29.13923
    and check the variable inflation factor
    Code:
    .    vif
    
        Variable    VIF    1/VIF    
                
        vc    1.34    0.746548
        pe    1.17    0.856759
        MB2_w01    1.27    0.787382
        fsize_w01    1.79    0.557760
        tang_w01    1.46    0.683080
        prof2_w01    2.01    0.497613
        LnRnD_w01    1.82    0.548491
        capex_w01    1.45    0.691691
        abne_w01    1.07    0.930430
        indlev_w01    1.65    0.606256
        fyear    
        1963    2.11    0.473790
        1964    2.33    0.428682
        1965    2.89    0.346256
        1966    3.33    0.300107
        1967    4.11    0.243356
        1968    4.22    0.236961
        1969    4.55    0.219642
        1970    5.00    0.200127
        1971    5.44    0.183805
        1972    6.55    0.152660
        1973    22.83    0.043792
        1974    33.10    0.030214
        1975    34.71    0.028808
        1976    34.05    0.029371
        1977    35.25    0.028365
        1978    34.82    0.028723
        1979    36.90    0.027101
        1980    38.31    0.026101
        1981    41.38    0.024169
        1982    52.71    0.018970
        1983    57.15    0.017497
        1984    77.92    0.012834
        1985    85.74    0.011663
        1986    90.22    0.011083
        1987    103.02    0.009707
        1988    110.87    0.009020
        1989    105.88    0.009445
        1990    103.77    0.009637
        1991    101.83    0.009821
        1992    108.93    0.009180
        1993    127.18    0.007863
        1994    143.60    0.006964
        1995    156.90    0.006373
        1996    172.69    0.005791
        1997    191.50    0.005222
        1998    187.52    0.005333
        1999    172.17    0.005808
        2000    168.06    0.005950
        2001    166.50    0.006006
        2002    154.39    0.006477
        2003    140.76    0.007104
        2004    132.61    0.007541
        2005    130.84    0.007643
        2006    126.53    0.007903
        2007    122.74    0.008147
        2008    118.64    0.008429
        2009    111.12    0.008999
        2010    106.88    0.009356
        2011    105.61    0.009469
        2012    104.55    0.009565
        2013    103.71    0.009643
        2014    108.16    0.009246
        2015    110.81    0.009025
        2016    109.64    0.009120
                
        Mean VIF    72.47
    The results after I exclude year fixed effects
    Code:
    reg s_oina_v1_w01 vc pe $CONTROLSF if nomiss==1, cluster(gvkey_n)
    
    Linear regression                               Number of obs     =     42,240
    F(10, 5187)       =     326.72
    Prob > F          =     0.0000
    R-squared         =     0.3497
    Root MSE          =     23.479
    
    (Std. Err. adjusted for 5,188 clusters in gvkey_n)
    
    Robust
    s_oina_v1~01       Coef.   Std. Err.      t    P>t     [95% Conf. Interval]
    
    vc    2.786415   .5083468     5.48   0.000     1.789841    3.782989
    pe   -.4794882    .399109    -1.20   0.230     -1.26191    .3029337
    MB2_w01    2.578851   .1551001    16.63   0.000     2.274789    2.882912
    fsize_w01   -1.711538   .1023789   -16.72   0.000    -1.912244   -1.510832
    tang_w01   -4.678255   .6267758    -7.46   0.000       -5.907    -3.44951
    prof2_w01   -24.49453   1.459964   -16.78   0.000    -27.35667   -21.63238
    LnRnD_w01    22.10426   1.336092    16.54   0.000     19.48495    24.72356
    capex_w01    11.85221   2.584446     4.59   0.000     6.785603    16.91881
    abne_w01    1.551582   .6725154     2.31   0.021     .2331683    2.869995
    indlev_w01   -4.388744     .61205    -7.17   0.000     -5.58862   -3.188868
    _cons    21.09565    .791491    26.65   0.000       19.544    22.64731
    Code:
    
    Variable    VIF    1/VIF     
            
    prof2_w01    1.88    0.531979
    LnRnD_w01    1.80    0.554424
    tang_w01    1.42    0.704543
    indlev_w01    1.35    0.738034
    vc    1.33    0.751402
    capex_w01    1.33    0.752730
    MB2_w01    1.25    0.799959
    fsize_w01    1.23    0.815327
    pe    1.15    0.868929
    abne_w01    1.07    0.937740
            
    Mean VIF    1.38
    P.s: I don't know why the tables look like that. Is there any way to re-align them?

    Regards,
    Huyen
    Last edited by Huyen Nguyen VUW; 05 May 2020, 02:42.

  • #2
    Huyen:
    1) betas can be >1 (or<0).
    2) It's clear that -year- is problematic, has you can see from the width of related 95% CIs (that are far more informative that the -estat vif- outcome).
    3) I'm not sure whether, as you have a time serie, -regress- (and not some other procedure available under -ts- suite) is actually the way to go.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Hi Carlo,
      1. Thank you
      2. Do you mean that 95%CIs of -year- is quite large? I think they are a bit larger compared with 95% CIs of other control variables. But how to consider as narrow or large 95% CIs?
      3. My data is a panel, not a time series. I re-try to use -xtreg-, the results are quite identically. I didn't get your idea about "under -ts- suite", could you please clarify this? Also, do you have any suggestions about other suitable models?
      4. You said betas can be greater than 1. Just for future similar issues.
      I found somewhere saying that to correct the multicollinearity problem, I can :
      - leave the variable causing it out of the model. I excluded -year- out of my model
      or:
      - use -orthog- command. I did use this command to create a new range of control variables and re-run regression. The results aren't much different
      or:
      - use the partial least square regression. I read from STATA and it seems that this one is similar to -orthog- command. Is that right? Do you know how to use that in STATA?

      Regards
      Huyen

      Comment


      • #4
        Huyen:
        1) There's non hard and fast rule to split 95% CIs in wide and narrow. In your case 95% CIs for years were almost all actually wide and a suspect of multicollinearity was legal.
        2) If you dealt with a panel data set, why reporting -regress- results? For -ts- suite of commands, type -help time series-.
        3) Multicollinearity issue, when really relevant, can be easily managed just omitting the culprit variable(s).
        4) I've never used -orthog- hence I cannot advise on it.
        Kind regards,
        Carlo
        (Stata 19.0)

        Comment


        • #5
          Thank you Carlo.

          Comment


          • #6
            Hi Carlo,

            In the model above, I would like to know how the relationship of VC backing (variable "vc(0/1)") and cash flow volatility (s_oina_v1_w01) during the first 10 years since listing. Then I add age dummy variable ( age1(0/1) -age10(0/1) ) and their interaction with vc(0/1). However, when I run the model, age1(0/1) and its interaction term with vc(0/1) and pe(0/1) are omitted "because of collinearity". Is it normal if I exclude these variables out of my model?

            Code:
            . xtreg s_oina_v1_w01 age1-age10 int_av1-int_av10 int_ap1-int_ap10 $CONTROLSF    if    nomiss==1,    vce(cluster    gvkey_n)
            note: age1 omitted because of collinearity
            note: int_av1 omitted because of collinearity
            note: int_ap1 omitted because of collinearity
            
            Random-effects GLS regression                   Number of obs     =     42,240
            Group variable: gvkey_n                         Number of groups  =      5,188
            
            R-sq:                                           Obs per group:
            within  = 0.0593                                         min =          1
            between = 0.3499                                         avg =        8.1
            overall = 0.3394                                         max =         52
            
            Wald chi2(35)     =    1886.86
            corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000
            
            (Std. Err. adjusted for 5,188 clusters in gvkey_n)
            
            Robust
            s_oina_v1~01       Coef.   Std. Err.      z    P>z     [95% Conf. Interval]
            
            age1           0  (omitted)
            age2    2.442264   .6953139     3.51   0.000     1.079474    3.805055
            age3     .011724   .6044512     0.02   0.985    -1.172979    1.196427
            age4    .1201383   .6199582     0.19   0.846    -1.094957    1.335234
            age5   -.4386206   .5811833    -0.75   0.450    -1.577719    .7004777
            age6   -.8541236    .560806    -1.52   0.128    -1.953283     .245036
            age7   -.6683499   .5774217    -1.16   0.247    -1.800076    .4633759
            age8   -1.406466   .5703668    -2.47   0.014    -2.524365    -.288568
            age9   -1.751251   .5559751    -3.15   0.002    -2.840942   -.6615601
            age10   -1.307863   .5573396    -2.35   0.019    -2.400229    -.215498
            int_av1           0  (omitted)
            int_av2    6.420925   1.077316     5.96   0.000     4.309424    8.532426
            int_av3    3.385284   .9856227     3.43   0.001     1.453499    5.317069
            int_av4    3.686842   1.047583     3.52   0.000     1.633616    5.740067
            int_av5    2.821071   1.026758     2.75   0.006     .8086618    4.833481
            int_av6     3.16616   1.077989     2.94   0.003      1.05334    5.278979
            int_av7    3.353581   1.106437     3.03   0.002     1.185004    5.522157
            int_av8    2.772264   1.097081     2.53   0.012     .6220249    4.922502
            int_av9    2.145313    1.12897     1.90   0.057    -.0674276    4.358054
            int_av10    2.341027   1.118976     2.09   0.036     .1478745     4.53418
            int_ap1           0  (omitted)
            int_ap2   -2.831508   .8815614    -3.21   0.001    -4.559337   -1.103679
            int_ap3   -1.190499    .733592    -1.62   0.105    -2.628312    .2473153
            int_ap4   -.7628211   .8763299    -0.87   0.384    -2.480396     .954754
            int_ap5   -.0457845   .8796854    -0.05   0.958    -1.769936    1.678367
            int_ap6   -.9728998   .7790681    -1.25   0.212    -2.499845    .5540456
            int_ap7   -.5041601   .8901142    -0.57   0.571    -2.248752    1.240432
            int_ap8   -.4973147   .8063276    -0.62   0.537    -2.077688    1.083058
            int_ap9    .6573118   .8566892     0.77   0.443    -1.021768    2.336392
            int_ap10    .4352756   .7966329     0.55   0.585    -1.126096    1.996647
            MB2_w01    2.227686   .1499215    14.86   0.000     1.933846    2.521527
            fsize_w01   -1.732461   .1596916   -10.85   0.000    -2.045451   -1.419471
            tang_w01   -6.244286   .8355756    -7.47   0.000    -7.881984   -4.606588
            prof2_w01   -17.08799   1.537879   -11.11   0.000    -20.10218    -14.0738
            LnRnD_w01     13.9455   1.288791    10.82   0.000     11.41951    16.47148
            capex_w01    .0359132   2.262054     0.02   0.987     -4.39763    4.469457
            abne_w01   -.0056373    .591528    -0.01   0.992    -1.165011    1.153736
            indlev_w01   -1.604053   .5645413    -2.84   0.004    -2.710534   -.4975725
            _cons    22.35429   1.363306    16.40   0.000     19.68226    25.02632
            
            sigma_u   17.009718
            sigma_e   19.347874
            rho   .43595487   (fraction of variance due to u_i)
            Regards,
            ​​​​​​​Huyen

            Comment


            • #7
              Huyen:
              please use CODE delimiters to share what you typed and what Stata gave you back (as per FAQ). Thanks.
              That said, (by the way: you created both categorical variables and interactions by hand. why not exploiting the wonderful capabilities of -fvvarlist- notation?), Stata has omitted some predictors to avoid the so called dummy trap (https://en.wikipedia.org/wiki/Dummy_...le_(statistics).
              Kind regards,
              Carlo
              (Stata 19.0)

              Comment


              • #8
                Hi Carlo,
                Sorry for the above posts. Now I figured out that I should use the CODE delimiters (#) for the command and STATA results separately.

                Code:
                xtreg s_oina_v1_w01 vc pe age1-age10 int_av1-int_av10 int_ap1-int_ap10 $CONTROLSF  if nomiss==1, cluster (gvkey_n)
                Code:
                note: age1 omitted because of collinearity
                note: int_av1 omitted because of collinearity
                note: int_ap1 omitted because of collinearity
                
                Random-effects GLS regression                   Number of obs     =     42,240
                Group variable: gvkey_n                         Number of groups  =      5,188
                
                R-sq:                                           Obs per group:
                     within  = 0.0597                                         min =          1
                     between = 0.3485                                         avg =        8.1
                     overall = 0.3371                                         max =         52
                
                                                                Wald chi2(37)     =    2196.75
                corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000
                
                                            (Std. Err. adjusted for 5,188 clusters in gvkey_n)
                ------------------------------------------------------------------------------
                             |               Robust
                s_oina_v1~01 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                -------------+----------------------------------------------------------------
                          vc |   4.440185   .9970745     4.45   0.000     2.485955    6.394415
                          pe |  -.6701737   .7138086    -0.94   0.348    -2.069213    .7288653
                        age1 |          0  (omitted)
                        age2 |   3.225829   .6748729     4.78   0.000     1.903102    4.548555
                        age3 |   .7078983   .5949819     1.19   0.234    -.4582447    1.874041
                        age4 |   .7579673   .6141664     1.23   0.217    -.4457767    1.961711
                        age5 |   .1442564   .5784581     0.25   0.803    -.9895007    1.278014
                        age6 |  -.3168103   .5543824    -0.57   0.568     -1.40338    .7697593
                        age7 |  -.1728711   .5748216    -0.30   0.764    -1.299501    .9537585
                        age8 |  -.9442892   .5692455    -1.66   0.097     -2.05999    .1714115
                        age9 |  -1.310552   .5572784    -2.35   0.019    -2.402797   -.2183063
                       age10 |  -.8850471   .5579147    -1.59   0.113     -1.97854    .2084456
                     int_av1 |          0  (omitted)
                     int_av2 |   4.174099   1.276243     3.27   0.001     1.672707     6.67549
                     int_av3 |   1.312059   1.193775     1.10   0.272    -1.027696    3.651814
                     int_av4 |   1.748455   1.229669     1.42   0.155    -.6616524    4.158563
                     int_av5 |   1.015402   1.187707     0.85   0.393    -1.312462    3.343265
                     int_av6 |   1.475805   1.217691     1.21   0.226    -.9108248    3.862435
                     int_av7 |   1.776771   1.213566     1.46   0.143    -.6017747    4.155316
                     int_av8 |   1.277543   1.171493     1.09   0.275    -1.018541    3.573627
                     int_av9 |   .7335421   1.206518     0.61   0.543     -1.63119    3.098274
                    int_av10 |   .9975508   1.170011     0.85   0.394    -1.295628     3.29073
                     int_ap1 |          0  (omitted)
                     int_ap2 |  -2.456276    .990555    -2.48   0.013    -4.397728   -.5148238
                     int_ap3 |  -.8204365   .8314389    -0.99   0.324    -2.450027    .8091538
                     int_ap4 |  -.4274948   .9719415    -0.44   0.660    -2.332465    1.477476
                     int_ap5 |   .2666641   .9492772     0.28   0.779    -1.593885    2.127213
                     int_ap6 |  -.6745472   .8406924    -0.80   0.422    -2.322274    .9731797
                     int_ap7 |  -.2271647   .9462136    -0.24   0.810    -2.081709     1.62738
                     int_ap8 |  -.2221775   .8550044    -0.26   0.795    -1.897955      1.4536
                     int_ap9 |   .9197778   .9221622     1.00   0.319     -.887627    2.727182
                    int_ap10 |   .6836452   .8264573     0.83   0.408    -.9361814    2.303472
                     MB2_w01 |   2.216702   .1501654    14.76   0.000     1.922383    2.511021
                   fsize_w01 |  -1.749969    .163783   -10.68   0.000    -2.070977    -1.42896
                    tang_w01 |  -5.924007   .8266883    -7.17   0.000    -7.544286   -4.303727
                   prof2_w01 |  -16.88284   1.541332   -10.95   0.000     -19.9038   -13.86188
                   LnRnD_w01 |   13.69953   1.299815    10.54   0.000     11.15194    16.24712
                   capex_w01 |   .2722369   2.261079     0.12   0.904    -4.159396     4.70387
                    abne_w01 |  -.0600861    .590574    -0.10   0.919     -1.21759    1.097418
                  indlev_w01 |  -1.078625   .5563648    -1.94   0.053    -2.169081    .0118296
                       _cons |   20.59596   1.275669    16.15   0.000     18.09569    23.09622
                -------------+----------------------------------------------------------------
                     sigma_u |  17.012561
                     sigma_e |  19.347874
                         rho |  .43603708   (fraction of variance due to u_i)
                ------------------------------------------------------------------------------
                Thanks for your suggestions.
                1. About -fvvarlist notation- it seems a bit long to my command because I have 10 age dummies then would have 20 interaction terms of these age dummies and VC dummy and PE dummy. Is that still fine if I use the interaction terms that created by hand? The results table is even longer with the matrix results of each interaction term and so that I couldn't export a neat table for further use.
                2. Reading your suggested link, "The removed dummy then becomes the base category against which the other categories are compared." So then I have a question about how to interpret the coefficients.
                2.1.For example, the coefficient associated with age2(0/1) ( which takes the value of 1 if that is the second year since the company listed and 0 otherwise) is 3.22. So I can say the cash flow volatility of the company in the second year is 3.22 % higher than in the first year? Similarly, the coefficient associated with age3(0/1) (if significant) is to show the difference between year 3 and year 1?

                2.2.The coefficient associated with the interaction term int_av2 (= age2(0/1)#vc(0/1) )

                Code:
                  int_av2 |   4.174099   1.276243     3.27   0.001     1.672707     6.67549
                given the coefficients of VC(0/1) and age2(0/1)
                Code:
                      vc |   4.440185   .9970745     4.45   0.000     2.485955    6.394415
                Code:
                      age2 |   3.225829   .6748729     4.78   0.000     1.903102    4.548555
                I can say: In year 2, the cash flow volatility of VC backed firms is 4.17% higher than non-VC backed firms. But how I can interpret related to the interaction term of age1(0/1) and vc(0/1), which now becomes the base category?

                2.3. When I use the factor variable notation as you suggested
                Code:
                  age2#vc |
                        0 1  |  -4.174099   1.276243    -3.27   0.001     -6.67549   -1.672707
                        1 0  |          0  (omitted)
                        1 1  |          0  (omitted)
                             |
                the interested thing is the coefficient associated with vc(0/1) change much, to
                Code:
                    vc |   18.95141   6.591246     2.88   0.004     6.032807    31.87002
                Regards,
                Huyen

                Comment


                • #9
                  Huyen:
                  most of your interpretation problems seems to rest on your data layout, that looks -wide- instead than -long- (the latter is highy preferable for almost all the statistical procedures that you carry out.
                  with Stata).
                  At the moment, I do not have the time to skim through all your questions; hence I will reply to the first one ony:
                  you can say that, when adjusted for the other predictors, the cash-flow volatility due to year 2 predictor is 3.22% (by the way: is your regressand expressed in natural log terms; if that were the case, 3.22% is only an approximation of the change in the regressand explained by that predictor) higher than in year 1 (assumed that year 1 is the reference category).
                  Perhaps it would be more frutiful to express time as a continuous variable and search for possible non-linear regression with the dependent variable.
                  As an aside, I would tidy up your model, as it seems that you have too many predictors to disseminate your results in an effective way.
                  Kind regards,
                  Carlo
                  (Stata 19.0)

                  Comment


                  • #10
                    Thank you Carlo

                    Comment

                    Working...
                    X