Hi Tom,
I've been testing the inclusion of more exporters, but I have the same problem: the distance and other geographical variables are omitted. It seems that some observations are either singletons or separated by a fixed effect. Could you explain me that better?
I attach my code, where importador is importer-fixed effect and exportador is exporter-fixed effects.
I also attach my fake data (it's a simple simulation data)}
And my results
I've been testing the inclusion of more exporters, but I have the same problem: the distance and other geographical variables are omitted. It seems that some observations are either singletons or separated by a fixed effect. Could you explain me that better?
I attach my code, where importador is importer-fixed effect and exportador is exporter-fixed effects.
Code:
ppmlhdfe exports lndistance commom_border tariff, a(importador exportador) cluster(distance)
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str3(exporter importer) str2 hs2 float(exports commom_border tariff exportador importador exp_imp distance lndistance) "PER" "BRA" "10" 0 1 12.5 3 1 3 2000.1 7.600953 "PER" "BRA" "10" 0 1 12.9 3 1 3 2000.1 7.600953 "PER" "USA" "20" 201 0 50 3 4 5 5000.6 8.517313 "PER" "USA" "20" 25.5 0 12 3 4 5 5000.6 8.517313 "PER" "CHL" "30" 60.2 1 64 3 2 4 1500.88 7.313807 "BRA" "PER" "30" 0 1 10.2 1 3 1 2000.1 7.600953 "BRA" "PER" "30" 0 1 10 1 3 1 2000.1 7.600953 "USA" "PER" "10" 0 0 18.8 4 3 6 5000.6 8.517313 "USA" "PER" "10" 6.1 0 16.5 4 3 6 5000.6 8.517313 "CHL" "PER" "20" .55 1 20.6 2 3 2 1500.88 7.313807 "CHL" "PER" "20" 0 1 0 2 3 2 1500.88 7.313807 "PER" "CHL" "30" 52 1 0 3 2 4 1500.88 7.313807 end
Code:
. ppmlhdfe exports lndistance commom_border tariff, a(importador exportador) cluster(distance) (dropped 4 observations that are either singletons or separated by a fixed effect) note: 2 variables omitted because of collinearity: lndistance commom_border Iteration 1: deviance = 1.4272e+02 eps = . iters = 2 tol = 1.0e-04 min(eta) = -2.31 P Iteration 2: deviance = 1.0608e+02 eps = 3.45e-01 iters = 2 tol = 1.0e-04 min(eta) = -3.30 Iteration 3: deviance = 9.7998e+01 eps = 8.25e-02 iters = 2 tol = 1.0e-04 min(eta) = -4.22 Iteration 4: deviance = 9.6078e+01 eps = 2.00e-02 iters = 2 tol = 1.0e-04 min(eta) = -5.00 Iteration 5: deviance = 9.5717e+01 eps = 3.77e-03 iters = 2 tol = 1.0e-04 min(eta) = -5.52 Iteration 6: deviance = 9.5690e+01 eps = 2.85e-04 iters = 2 tol = 1.0e-04 min(eta) = -5.72 Iteration 7: deviance = 9.5690e+01 eps = 2.72e-06 iters = 2 tol = 1.0e-04 min(eta) = -5.74 Iteration 8: deviance = 9.5690e+01 eps = 3.12e-10 iters = 2 tol = 1.0e-05 min(eta) = -5.74 S O ------------------------------------------------------------------------------------------------------------ (legend: p: exact partial-out s: exact solver h: step-halving o: epsilon below tolerance) Converged in 8 iterations and 16 HDFE sub-iterations (tol = 1.0e-08) HDFE PPML regression No. of obs = 8 Absorbing 2 HDFE groups Residual df = 1 Statistics robust to heteroskedasticity Wald chi2(1) = 0.72 Deviance = 95.68961957 Prob > chi2 = 0.3969 Log pseudolikelihood = -62.42041903 Pseudo R2 = 0.8083 Number of clusters (distance)= 2 (Std. Err. adjusted for 2 clusters in distance) ------------------------------------------------------------------------------- | Robust exports | Coef. Std. Err. z P>|z| [95% Conf. Interval] --------------+---------------------------------------------------------------- lndistance | 0 (omitted) commom_border | 0 (omitted) tariff | .0200342 .0236502 0.85 0.397 -.0263194 .0663879 _cons | 3.696671 .9807143 3.77 0.000 1.774506 5.618836 ------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| importador | 3 0 3 | exportador | 3 2 1 | -----------------------------------------------------+
Comment