What are the ways to compare the fit of multinomial, ordinal, and stereotype logistic regression to a given dataset with ordinal response data using Stata?
-
Login or Register
- Log in with
use https://www3.nd.edu/~rwilliam/statafiles/mroz.dta, clear *CATEGORIZE ANNUAL WORKING HOURS (NON-PARTICIPATION, PART-TIME, FULL-TIME) gen lfstatus= cond(hours==0, 0, cond(inrange(hours, 1, 1249), 1, 2)) lab def lfstatus 0 "non-participation" 1 "part-time work" 2 "full-time work" lab values lfstatus lfstatus mlogit lfstatus kidslt6 kidsge6 age educ exper nwifeinc est sto mlogit ologit lfstatus kidslt6 kidsge6 age educ exper nwifeinc est sto ologit lrtest mlogit ologit, force
. mlogit lfstatus kidslt6 kidsge6 age educ exper nwifeinc
Iteration 0: log likelihood = -809.85106
Iteration 1: log likelihood = -682.09452
Iteration 2: log likelihood = -676.45369
Iteration 3: log likelihood = -676.35678
Iteration 4: log likelihood = -676.35676
Multinomial logistic regression Number of obs = 753
LR chi2(12) = 266.99
Prob > chi2 = 0.0000
Log likelihood = -676.35676 Pseudo R2 = 0.1648
-----------------------------------------------------------------------------------
lfstatus | Coef. Std. Err. z P>|z| [95% Conf. Interval]
------------------+----------------------------------------------------------------
non_participation | (base outcome)
------------------+----------------------------------------------------------------
part_time_work |
kidslt6 | -1.029752 .2192135 -4.70 0.000 -1.459402 -.6001012
kidsge6 | .1452962 .0810486 1.79 0.073 -.0135561 .3041485
age | -.061935 .0161806 -3.83 0.000 -.0936485 -.0302215
educ | .2352844 .0489108 4.81 0.000 .139421 .3311478
exper | .0836159 .0155026 5.39 0.000 .0532314 .1140004
nwifeinc | -.0191471 .0093588 -2.05 0.041 -.0374899 -.0008043
_cons | -1.051627 .9599877 -1.10 0.273 -2.933168 .8299147
------------------+----------------------------------------------------------------
full_time_work |
kidslt6 | -2.04806 .2883306 -7.10 0.000 -2.613177 -1.482942
kidsge6 | -.0562924 .089552 -0.63 0.530 -.2318111 .1192262
age | -.1267562 .0173295 -7.31 0.000 -.1607214 -.0927911
educ | .2225451 .0508362 4.38 0.000 .1229081 .3221822
exper | .1554865 .0162169 9.59 0.000 .123702 .187271
nwifeinc | -.0218055 .0102905 -2.12 0.034 -.0419746 -.0016364
_cons | 1.552764 .9850566 1.58 0.115 -.3779109 3.48344
-----------------------------------------------------------------------------------
.
. est sto mlogit
.
. ologit lfstatus kidslt6 kidsge6 age educ exper nwifeinc
Iteration 0: log likelihood = -809.85106
Iteration 1: log likelihood = -686.68524
Iteration 2: log likelihood = -685.50088
Iteration 3: log likelihood = -685.49686
Iteration 4: log likelihood = -685.49686
Ordered logistic regression Number of obs = 753
LR chi2(6) = 248.71
Prob > chi2 = 0.0000
Log likelihood = -685.49686 Pseudo R2 = 0.1536
------------------------------------------------------------------------------
lfstatus | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
kidslt6 | -1.390614 .1813509 -7.67 0.000 -1.746055 -1.035172
kidsge6 | -.0341089 .0623172 -0.55 0.584 -.1562484 .0880307
age | -.0916151 .0121459 -7.54 0.000 -.1154207 -.0678096
educ | .158401 .0356408 4.44 0.000 .0885464 .2282557
exper | .1159833 .0112204 10.34 0.000 .0939917 .137975
nwifeinc | -.0153582 .0073408 -2.09 0.036 -.0297459 -.0009705
-------------+----------------------------------------------------------------
/cut1 | -1.75244 .7084357 -3.140949 -.3639319
/cut2 | -.3338748 .7054785 -1.716587 1.048838
------------------------------------------------------------------------------
.
. est sto ologit
.
. lrtest mlogit ologit, force
Likelihood-ratio test LR chi2(6) = 18.28
(Assumption: ologit nested in mlogit) Prob > chi2 = 0.0056
ssc install fitstat
Comment