Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Exploratory Factor Analysis

    Hi,

    I'm using exploratory factor analysis on a 5 point Likert Scale. The problem I'm facing is that the questions in my questionnaire are less (4 questions), so after conducting the analysis, I end up with 2 questions only. To retain the factors, I am considering a cut off of 0.3 and 0.4 for factor loadings and communality respectively. Also, if I calculate the cronbach's alpha for the 2 questions I get, it is above 0.7 but if I consider all 4, the alpha is between 0.4 and 0.5. What should I do? I read somewhere that the construct validity is affected by deleting the items.

    Also, since I'm doing an exploratory research, is it okay to use a chronbach's alpha value between 0.4 and 0.5?

  • #2
    Welcome to Statalist. I really don't understand your problem, which may be why you didn't get a quick answer. You'll increase your chances of a useful answer by following the FAQ on asking questions - provide Stata code in code delimiters, readable Stata output, and sample data using dataex.

    So, you have a questionnaire with only 4 questions all of which are on 5-point likert scales? I don't understand why factor analysis would eliminate questions per se. Are you saying you only get two extracted factors? [It is absolutely essential that you use the correct terminology so we understand what you are saying.]

    Try to repost following the FAQ and rewriting your posting to be clearer.

    Comment


    • #3
      A side note: if you have a scale that was designed to measure one construct, then I'd argue that you are wasting your time with EFA. You'd be justified in moving to CFA.

      That said, if you're saying that each question only has a loading of around 0.3 on its primary factor, then it sounds like you have a very poor scale to begin with. 0.5 is not really a good value for Cronbach's Alpha.
      Be aware that it can be very hard to answer a question without sample data. You can use the dataex command for this. Type help dataex at the command line.

      When presenting code or results, please use the code delimiters format them. Use the # button on the formatting toolbar, between the " (double quote) and <> buttons.

      Comment


      • #4
        I have a doubt on using Exploratory Factor Analysis. In every references I read EFA is used for ordinal variables or likert scale variables. My question is can EFA be used on nominal categorical variables?

        Comment


        • #5
          MPlus won't let you. Maybe they know something.

          Anyway, take look at the following naïve sortie.

          .ÿ
          .ÿversionÿ16.1

          .ÿ
          .ÿclearÿ*

          .ÿ
          .ÿsetÿseedÿ`=strreverse("1599137")'

          .ÿ
          .ÿquietlyÿsetÿobsÿ500

          .ÿ
          .ÿforvaluesÿfactorÿ=ÿ1/2ÿ{
          ÿÿ2.ÿ
          .ÿÿÿÿÿÿÿÿÿgenerateÿdoubleÿfÿ=ÿrnormal()
          ÿÿ3.ÿÿÿÿÿÿÿÿÿgenerateÿdoubleÿxbÿ=ÿfÿ+ÿ2ÿ*ÿln(1.25)
          ÿÿ4.ÿÿÿÿÿÿÿÿÿgenerateÿdoubleÿp1ÿ=ÿ1ÿ/ÿ(1ÿ+ÿexp(xb)ÿ+ÿexp(xb))
          ÿÿ5.ÿÿÿÿÿÿÿÿÿgenerateÿdoubleÿp2ÿ=ÿexp(xb)ÿ/ÿ(1ÿ+ÿexp(xb)ÿ+ÿexp(xb))
          ÿÿ6.ÿ
          .ÿÿÿÿÿÿÿÿÿforvaluesÿiÿ=ÿ1/6ÿ{
          ÿÿ7.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿgenerateÿdoubleÿuÿ=ÿruniform()
          ÿÿ8.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlocalÿitemÿ=ÿ6ÿ*ÿ(`factor'ÿ-ÿ1)ÿ+ÿ`i'
          ÿÿ9.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿgenerateÿbyteÿy`item'ÿ=ÿcond(uÿ<ÿp1,ÿ1,ÿ(cond(uÿ<ÿp1ÿ+ÿp2,ÿ2,ÿ3)))
          ÿ10.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdropÿu
          ÿ11.ÿÿÿÿÿÿÿÿÿ}
          ÿ12.ÿ
          .ÿÿÿÿÿÿÿÿÿdropÿfÿxbÿp1ÿp2
          ÿ13.ÿ}

          .ÿ
          .ÿ*
          .ÿ*ÿBeginÿhere
          .ÿ*
          .ÿgsemÿ///
          >ÿÿÿÿÿÿÿÿÿ(y1ÿy2ÿy3ÿy4ÿy5ÿy6ÿy7@0ÿy8ÿy9ÿy10ÿy11ÿy12ÿ<-ÿF1,ÿmlogit)ÿ///
          >ÿÿÿÿÿÿÿÿÿ(y1@0ÿy2ÿy3ÿy4ÿy5ÿy6ÿy7ÿy8ÿy9ÿy10ÿy11ÿy12ÿ<-ÿF2,ÿmlogit),ÿ///
          >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvariance(F1@1ÿF2@1)ÿcovariance(F1*F2)ÿ///
          >ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdifficultÿnocnsreportÿnodvheader

          Fittingÿfixed-effectsÿmodel:

          Iterationÿ0:ÿÿÿlogÿlikelihoodÿ=ÿ-6548.3658ÿÿ
          Iterationÿ1:ÿÿÿlogÿlikelihoodÿ=ÿ-6548.3658ÿÿ

          Refiningÿstartingÿvalues:

          Gridÿnodeÿ0:ÿÿÿlogÿlikelihoodÿ=ÿ-6543.8038

          Fittingÿfullÿmodel:

          Iterationÿ0:ÿÿÿlogÿlikelihoodÿ=ÿ-6543.8038ÿÿ(notÿconcave)
          Iterationÿ1:ÿÿÿlogÿlikelihoodÿ=ÿÿ-6515.666ÿÿ(notÿconcave)
          Iterationÿ2:ÿÿÿlogÿlikelihoodÿ=ÿ-6478.6934ÿÿ(notÿconcave)
          Iterationÿ3:ÿÿÿlogÿlikelihoodÿ=ÿ-6460.6929ÿÿ(notÿconcave)
          Iterationÿ4:ÿÿÿlogÿlikelihoodÿ=ÿ-6441.0513ÿÿ(notÿconcave)
          Iterationÿ5:ÿÿÿlogÿlikelihoodÿ=ÿ-6418.3837ÿÿ(notÿconcave)
          Iterationÿ6:ÿÿÿlogÿlikelihoodÿ=ÿ-6407.0985ÿÿ(notÿconcave)
          Iterationÿ7:ÿÿÿlogÿlikelihoodÿ=ÿ-6399.6901ÿÿ
          Iterationÿ8:ÿÿÿlogÿlikelihoodÿ=ÿ-6399.0225ÿÿ(backedÿup)
          Iterationÿ9:ÿÿÿlogÿlikelihoodÿ=ÿ-6395.9812ÿÿ
          Iterationÿ10:ÿÿlogÿlikelihoodÿ=ÿ-6395.1558ÿÿ
          Iterationÿ11:ÿÿlogÿlikelihoodÿ=ÿÿ-6395.122ÿÿ
          Iterationÿ12:ÿÿlogÿlikelihoodÿ=ÿ-6395.1218ÿÿ

          GeneralizedÿstructuralÿequationÿmodelÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿ500
          Logÿlikelihoodÿ=ÿ-6395.1218

          ------------------------------------------------------------------------------
          ÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿCoef.ÿÿÿStd.ÿErr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿConf.ÿInterval]
          -------------+----------------------------------------------------------------
          1.y1ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y1ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿÿ1.02307ÿÿÿ.2189883ÿÿÿÿÿ4.67ÿÿÿ0.000ÿÿÿÿÿ.5938608ÿÿÿÿ1.452279
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿÿÿÿÿÿÿÿÿ0ÿÿ(omitted)
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.3717671ÿÿÿ.1470239ÿÿÿÿÿ2.53ÿÿÿ0.011ÿÿÿÿÿ.0836055ÿÿÿÿ.6599288
          -------------+----------------------------------------------------------------
          3.y1ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.9403023ÿÿÿ.2139659ÿÿÿÿÿ4.39ÿÿÿ0.000ÿÿÿÿÿ.5209369ÿÿÿÿ1.359668
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿÿÿÿÿÿÿÿÿ0ÿÿ(omitted)
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.4913014ÿÿÿ.1431567ÿÿÿÿÿ3.43ÿÿÿ0.001ÿÿÿÿÿ.2107193ÿÿÿÿ.7718834
          -------------+----------------------------------------------------------------
          1.y2ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y2ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ1.185725ÿÿÿ.2666155ÿÿÿÿÿ4.45ÿÿÿ0.000ÿÿÿÿÿÿ.663168ÿÿÿÿ1.708281
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.1011826ÿÿÿ.2836225ÿÿÿÿ-0.36ÿÿÿ0.721ÿÿÿÿ-.6570725ÿÿÿÿ.4547073
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.5727492ÿÿÿ.1534799ÿÿÿÿÿ3.73ÿÿÿ0.000ÿÿÿÿÿ.2719342ÿÿÿÿ.8735642
          -------------+----------------------------------------------------------------
          3.y2ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ1.045324ÿÿÿ.2614398ÿÿÿÿÿ4.00ÿÿÿ0.000ÿÿÿÿÿ.5329116ÿÿÿÿ1.557737
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.1137081ÿÿÿ.2759412ÿÿÿÿ-0.41ÿÿÿ0.680ÿÿÿÿÿ-.654543ÿÿÿÿ.4271268
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.4528805ÿÿÿ.1546731ÿÿÿÿÿ2.93ÿÿÿ0.003ÿÿÿÿÿ.1497269ÿÿÿÿ.7560342
          -------------+----------------------------------------------------------------
          1.y3ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y3ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.8093333ÿÿÿ.2313031ÿÿÿÿÿ3.50ÿÿÿ0.000ÿÿÿÿÿ.3559876ÿÿÿÿ1.262679
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿÿÿ.035278ÿÿÿ.2424523ÿÿÿÿÿ0.15ÿÿÿ0.884ÿÿÿÿ-.4399197ÿÿÿÿ.5104757
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.5192775ÿÿÿÿ.144392ÿÿÿÿÿ3.60ÿÿÿ0.000ÿÿÿÿÿ.2362743ÿÿÿÿ.8022808
          -------------+----------------------------------------------------------------
          3.y3ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ1.115718ÿÿÿ.2549892ÿÿÿÿÿ4.38ÿÿÿ0.000ÿÿÿÿÿ.6159484ÿÿÿÿ1.615488
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿÿ.0099192ÿÿÿ.2688366ÿÿÿÿÿ0.04ÿÿÿ0.971ÿÿÿÿ-.5169908ÿÿÿÿ.5368292
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.4369933ÿÿÿÿ.149058ÿÿÿÿÿ2.93ÿÿÿ0.003ÿÿÿÿÿ.1448451ÿÿÿÿ.7291415
          -------------+----------------------------------------------------------------
          1.y4ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y4ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.6775989ÿÿÿ.2250897ÿÿÿÿÿ3.01ÿÿÿ0.003ÿÿÿÿÿ.2364311ÿÿÿÿ1.118767
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿÿ.0529742ÿÿÿ.2260317ÿÿÿÿÿ0.23ÿÿÿ0.815ÿÿÿÿ-.3900397ÿÿÿÿ.4959882
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.1631845ÿÿÿ.1358936ÿÿÿÿÿ1.20ÿÿÿ0.230ÿÿÿÿÿ-.103162ÿÿÿÿÿ.429531
          -------------+----------------------------------------------------------------
          3.y4ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ1.003615ÿÿÿÿ.237794ÿÿÿÿÿ4.22ÿÿÿ0.000ÿÿÿÿÿ.5375476ÿÿÿÿ1.469683
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.3300879ÿÿÿ.2655188ÿÿÿÿ-1.24ÿÿÿ0.214ÿÿÿÿ-.8504951ÿÿÿÿ.1903194
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.3754924ÿÿÿ.1325061ÿÿÿÿÿ2.83ÿÿÿ0.005ÿÿÿÿÿ.1157853ÿÿÿÿ.6351995
          -------------+----------------------------------------------------------------
          1.y5ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y5ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ1.670547ÿÿÿÿ.371996ÿÿÿÿÿ4.49ÿÿÿ0.000ÿÿÿÿÿ.9414484ÿÿÿÿ2.399646
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.2656408ÿÿÿÿ.360449ÿÿÿÿ-0.74ÿÿÿ0.461ÿÿÿÿ-.9721078ÿÿÿÿ.4408263
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.4420706ÿÿÿ.1874183ÿÿÿÿÿ2.36ÿÿÿ0.018ÿÿÿÿÿ.0747374ÿÿÿÿ.8094038
          -------------+----------------------------------------------------------------
          3.y5ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ1.496031ÿÿÿ.3558567ÿÿÿÿÿ4.20ÿÿÿ0.000ÿÿÿÿÿ.7985646ÿÿÿÿ2.193497
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.3000823ÿÿÿ.3374749ÿÿÿÿ-0.89ÿÿÿ0.374ÿÿÿÿ-.9615209ÿÿÿÿ.3613562
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.5799403ÿÿÿ.1827861ÿÿÿÿÿ3.17ÿÿÿ0.002ÿÿÿÿÿ.2216861ÿÿÿÿ.9381946
          -------------+----------------------------------------------------------------
          1.y6ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y6ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ1.183436ÿÿÿ.2621509ÿÿÿÿÿ4.51ÿÿÿ0.000ÿÿÿÿÿ.6696294ÿÿÿÿ1.697242
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.2141923ÿÿÿ.2740741ÿÿÿÿ-0.78ÿÿÿ0.435ÿÿÿÿ-.7513676ÿÿÿÿ.3229831
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿÿ.376677ÿÿÿ.1444303ÿÿÿÿÿ2.61ÿÿÿ0.009ÿÿÿÿÿ.0935988ÿÿÿÿ.6597552
          -------------+----------------------------------------------------------------
          3.y6ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.9694153ÿÿÿ.2535339ÿÿÿÿÿ3.82ÿÿÿ0.000ÿÿÿÿÿÿ.472498ÿÿÿÿ1.466333
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.1962268ÿÿÿ.2540872ÿÿÿÿ-0.77ÿÿÿ0.440ÿÿÿÿ-.6942286ÿÿÿÿÿ.301775
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.2963404ÿÿÿ.1437125ÿÿÿÿÿ2.06ÿÿÿ0.039ÿÿÿÿÿ.0146691ÿÿÿÿ.5780117
          -------------+----------------------------------------------------------------
          1.y7ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y7ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿÿÿÿÿÿÿÿ0ÿÿ(omitted)
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-1.191631ÿÿÿ.2752597ÿÿÿÿ-4.33ÿÿÿ0.000ÿÿÿÿÿ-1.73113ÿÿÿ-.6521317
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.5466811ÿÿÿ.1720251ÿÿÿÿÿ3.18ÿÿÿ0.001ÿÿÿÿÿ.2095181ÿÿÿÿ.8838441
          -------------+----------------------------------------------------------------
          3.y7ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿÿÿÿÿÿÿÿ0ÿÿ(omitted)
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-1.304706ÿÿÿ.2825807ÿÿÿÿ-4.62ÿÿÿ0.000ÿÿÿÿ-1.858554ÿÿÿ-.7508583
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.5043192ÿÿÿ.1759137ÿÿÿÿÿ2.87ÿÿÿ0.004ÿÿÿÿÿ.1595347ÿÿÿÿ.8491037
          -------------+----------------------------------------------------------------
          1.y8ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y8ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.1143209ÿÿÿÿ.226098ÿÿÿÿÿ0.51ÿÿÿ0.613ÿÿÿÿÿ-.328823ÿÿÿÿ.5574648
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-1.015854ÿÿÿ.2448638ÿÿÿÿ-4.15ÿÿÿ0.000ÿÿÿÿ-1.495779ÿÿÿÿÿ-.53593
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.5485492ÿÿÿ.1460614ÿÿÿÿÿ3.76ÿÿÿ0.000ÿÿÿÿÿ.2622741ÿÿÿÿ.8348243
          -------------+----------------------------------------------------------------
          3.y8ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.1221159ÿÿÿ.2429582ÿÿÿÿÿ0.50ÿÿÿ0.615ÿÿÿÿ-.3540734ÿÿÿÿ.5983052
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-1.162939ÿÿÿ.2708954ÿÿÿÿ-4.29ÿÿÿ0.000ÿÿÿÿ-1.693885ÿÿÿÿ-.631994
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.2875985ÿÿÿ.1524499ÿÿÿÿÿ1.89ÿÿÿ0.059ÿÿÿÿ-.0111978ÿÿÿÿ.5863949
          -------------+----------------------------------------------------------------
          1.y9ÿÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y9ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.7076047ÿÿÿ.3620767ÿÿÿÿÿ1.95ÿÿÿ0.051ÿÿÿÿ-.0020527ÿÿÿÿ1.417262
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿÿ-1.76664ÿÿÿ.4289424ÿÿÿÿ-4.12ÿÿÿ0.000ÿÿÿÿ-2.607351ÿÿÿ-.9259282
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.4943757ÿÿÿ.1808227ÿÿÿÿÿ2.73ÿÿÿ0.006ÿÿÿÿÿ.1399696ÿÿÿÿ.8487818
          -------------+----------------------------------------------------------------
          3.y9ÿÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.4664961ÿÿÿ.2974223ÿÿÿÿÿ1.57ÿÿÿ0.117ÿÿÿÿÿ-.116441ÿÿÿÿ1.049433
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-1.353195ÿÿÿ.3560929ÿÿÿÿ-3.80ÿÿÿ0.000ÿÿÿÿ-2.051124ÿÿÿ-.6552658
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.4422925ÿÿÿÿÿ.18538ÿÿÿÿÿ2.39ÿÿÿ0.017ÿÿÿÿÿ.0789544ÿÿÿÿ.8056307
          -------------+----------------------------------------------------------------
          1.y10ÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y10ÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.0077073ÿÿÿ.2144065ÿÿÿÿÿ0.04ÿÿÿ0.971ÿÿÿÿ-.4125218ÿÿÿÿ.4279363
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.7531672ÿÿÿ.2210235ÿÿÿÿ-3.41ÿÿÿ0.001ÿÿÿÿ-1.186365ÿÿÿ-.3199691
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿÿ.382196ÿÿÿ.1356822ÿÿÿÿÿ2.82ÿÿÿ0.005ÿÿÿÿÿ.1162637ÿÿÿÿ.6481283
          -------------+----------------------------------------------------------------
          3.y10ÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.2928235ÿÿÿ.2372646ÿÿÿÿÿ1.23ÿÿÿ0.217ÿÿÿÿ-.1722066ÿÿÿÿ.7578536
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.9653018ÿÿÿ.2395377ÿÿÿÿ-4.03ÿÿÿ0.000ÿÿÿÿ-1.434787ÿÿÿ-.4958166
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿÿ.382724ÿÿÿ.1370657ÿÿÿÿÿ2.79ÿÿÿ0.005ÿÿÿÿÿ.1140801ÿÿÿÿ.6513679
          -------------+----------------------------------------------------------------
          1.y11ÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y11ÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿ-.0793499ÿÿÿÿ.207461ÿÿÿÿ-0.38ÿÿÿ0.702ÿÿÿÿ-.4859661ÿÿÿÿ.3272662
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.7791345ÿÿÿÿ.221766ÿÿÿÿ-3.51ÿÿÿ0.000ÿÿÿÿ-1.213788ÿÿÿÿ-.344481
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.2309923ÿÿÿ.1359175ÿÿÿÿÿ1.70ÿÿÿ0.089ÿÿÿÿ-.0354011ÿÿÿÿ.4973856
          -------------+----------------------------------------------------------------
          3.y11ÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ-.037212ÿÿÿ.2125374ÿÿÿÿ-0.18ÿÿÿ0.861ÿÿÿÿ-.4537776ÿÿÿÿ.3793536
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.8863697ÿÿÿ.2230929ÿÿÿÿ-3.97ÿÿÿ0.000ÿÿÿÿ-1.323624ÿÿÿ-.4491156
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.3542633ÿÿÿ.1338649ÿÿÿÿÿ2.65ÿÿÿ0.008ÿÿÿÿÿ.0918929ÿÿÿÿ.6166337
          -------------+----------------------------------------------------------------
          1.y12ÿÿÿÿÿÿÿÿ|ÿÿ(baseÿoutcome)
          -------------+----------------------------------------------------------------
          2.y12ÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.6108455ÿÿÿ.2584987ÿÿÿÿÿ2.36ÿÿÿ0.018ÿÿÿÿÿ.1041974ÿÿÿÿ1.117494
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-1.019836ÿÿÿÿ.263896ÿÿÿÿ-3.86ÿÿÿ0.000ÿÿÿÿ-1.537062ÿÿÿÿ-.502609
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.4335025ÿÿÿ.1376043ÿÿÿÿÿ3.15ÿÿÿ0.002ÿÿÿÿÿ.1638032ÿÿÿÿ.7032019
          -------------+----------------------------------------------------------------
          3.y12ÿÿÿÿÿÿÿÿ|
          ÿÿÿÿÿÿÿÿÿÿF1ÿ|ÿÿÿ.4647257ÿÿÿ.2451959ÿÿÿÿÿ1.90ÿÿÿ0.058ÿÿÿÿ-.0158495ÿÿÿÿ.9453009
          ÿÿÿÿÿÿÿÿÿÿF2ÿ|ÿÿ-.8925677ÿÿÿ.2592844ÿÿÿÿ-3.44ÿÿÿ0.001ÿÿÿÿ-1.400756ÿÿÿ-.3843795
          ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.2525869ÿÿÿ.1406466ÿÿÿÿÿ1.80ÿÿÿ0.073ÿÿÿÿ-.0230753ÿÿÿÿ.5282491
          -------------+----------------------------------------------------------------
          ÿÿÿÿÿÿvar(F1)|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
          ÿÿÿÿÿÿvar(F2)|ÿÿÿÿÿÿÿÿÿÿ1ÿÿ(constrained)
          -------------+----------------------------------------------------------------
          ÿÿÿcov(F1,F2)|ÿÿÿ.4072495ÿÿÿ.1862324ÿÿÿÿÿ2.19ÿÿÿ0.029ÿÿÿÿÿ.0422408ÿÿÿÿ.7722582
          ------------------------------------------------------------------------------

          .ÿ
          .ÿexit

          endÿofÿdo-file


          .


          Who would have thought, huh? Good luck!

          References here (dataset creation) and here (EFA-within-CFA-framework model).

          Comment


          • #6
            Originally posted by Anand Sunny View Post
            I have a doubt on using Exploratory Factor Analysis. In every references I read EFA is used for ordinal variables or likert scale variables. My question is can EFA be used on nominal categorical variables?
            Definitely no. You need the questions to be 1) measuring the same thing, and 2) a higher value means a greater quantity of whatever thing is being measured.

            If you have a nominal variable, you definitely would violate @2.

            It is possible to use nominal items in more advanced techniques related to latent variables, e.g. item response theory (that's like a generalized CFA) has a model for nominal variables (nominal response model). I would probably not suggest jumping to IRT if you're still unfamiliar with EFA.
            Be aware that it can be very hard to answer a question without sample data. You can use the dataex command for this. Type help dataex at the command line.

            When presenting code or results, please use the code delimiters format them. Use the # button on the formatting toolbar, between the " (double quote) and <> buttons.

            Comment

            Working...
            X