Dear Dr Rios,
Thanks to you and to Prof Baum for the rif_package.
I am currently working on a household health expenditure dataset to assess the determinants of inequality on a (“negative”) binary outcome: financial hardship. After discovering your package, I decided to use it for my purposes. Unfortunately, I am having difficulties in interpreting the results of “rifhdreg”.
The examples in the package documentation and your recent working paper with Dr de New provided some clarity on the interpretation of quantile distribution and Gini measures. However, I cannot get my head around the interpretation of the results of the regression on the Erreygers Concentration index (CI); which value is negative for my sample.
The table below includes the output of the regression and the means of the independent variables. How should one interpret the results of the dummy and continuous variables? Would this be correct:
I embedded below a data extraction and simplified syntax if needed.
Thanks to you and to Prof Baum for the rif_package.
I am currently working on a household health expenditure dataset to assess the determinants of inequality on a (“negative”) binary outcome: financial hardship. After discovering your package, I decided to use it for my purposes. Unfortunately, I am having difficulties in interpreting the results of “rifhdreg”.
The examples in the package documentation and your recent working paper with Dr de New provided some clarity on the interpretation of quantile distribution and Gini measures. However, I cannot get my head around the interpretation of the results of the regression on the Erreygers Concentration index (CI); which value is negative for my sample.
The table below includes the output of the regression and the means of the independent variables. How should one interpret the results of the dummy and continuous variables? Would this be correct:
- A transfer of 1 percentage point of all the households from rural to urban areas (i.e. from 0.24 to 0.25) results in a decrease of the CI from -23.687 to -24.0324(=-23.687-0.01*34.54); resulting in an increase in inequality of 1.46% (0.01*-23.687/-34.54).
- An increase of 1 percentage point in exemptions results in an increase of the CI from -23.687 to -23.343(=-23.687+0.344); resulting in a decrease in inequality of -1.45% (0.344/-23.687).
Code:
___________________________________________________________________________________
Results | mean | coef | se
___________________________________________________________________________________
Independent variables
Urban (vs Rural) area = 1, Urban | 0.24 | -34.54 | (24.39)
Exemptions [per 100 persons] | 10.19 | 0.344* | (0.202)
Hospitalisations [per 100 persons] | 12.28 | 0.162 | (0.288)
Per capita: health expenditure [in PPP] | 36.56 | -0.271***| (0.0670)
Per capita: injuries [per 100 persons] | 0.63 | 0.808 | (1.625)
Constant | 0.24 | -11.36 | (10.17)
___________________________________________________________________________________
Mean RIF | -23.687 |
Observations | 100 |
R-squared | 0.089 |
___________________________________________________________________________________
*** p<0.01, ** p<0.05, * p<0.1
I embedded below a data extraction and simplified syntax if needed.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(outcome urban) double(freecare hospitalised) float(oop_ppp2011_pc injury_pc) double windex str5 psu double hhw float newstratum 1 1 0 0 106.6383 0 -.6653426762509831 "02017" 325.0031 21 1 0 0 0 33.93037 0 -.9940431241995353 "06041" 384.0734 62 0 1 0 0 36.192394 0 1.3772819525025548 "05010" 281.9622 51 0 0 0 0 3.393037 0 -1.5624445999821204 "17018" 428.6849 172 0 1 1 0 0 0 -.3868521018730237 "24006" 91.9543 241 0 0 0 0 12.441135 0 .5485493166751617 "18016" 206.1392 182 1 1 0 0 129.72711 0 -.477384960306328 "08034" 349.1909 81 0 0 0 0 14.081104 0 -.4793959245152082 "03042" 326.9764 32 0 0 0 0 1.3572148 0 .33021259980077117 "20029" 337.9224 202 0 0 1 0 0 0 -1.399081326933255 "14039" 465.28 142 0 1 1 0 0 0 -.32727381027949654 "06042" 318.2305 61 1 1 0 0 88.21896 0 1.4256173738302529 "12005" 260.4666 121 1 0 0 0 27.144297 0 -.34453240547787434 "03012" 299.3531 32 0 0 0 0 .6786074 0 -.5196965315819949 "03037" 243.4908 32 0 0 0 0 1.1310123 0 -.32550264283464536 "10022" 278.4566 102 0 1 0 0 5.089556 0 1.8056082002656537 "08060" 343.8567 81 0 1 0 0 .25447777 0 .8508176461046831 "18008" 174.4553 181 0 0 0 0 3.393037 0 -.6874367257691888 "14004" 465.3886 142 1 0 0 0 54.28859 0 -.7032819004174158 "20036" 330.7335 202 0 0 0 0 13.572148 0 .4458127053740737 "21043" 383.7216 212 1 0 0 0 83.4687 0 -.9198050380755813 "17046" 325.3251 172 1 0 0 0 54.28859 0 -.4634501674724758 "18024" 190.0133 182 0 1 0 0 .50895554 0 1.52427832451893 "21007" 438.8106 211 0 1 0 0 3.393037 0 1.415592204856456 "13021" 129.8951 131 0 1 0 0 6.592186 0 .4756382414458382 "01028" 376.4169 11 0 0 0 0 16.965185 0 -.11751882264082486 "17009" 304.0917 172 0 1 0 0 77.55513 0 2.0590904430614922 "12061" 649.9344 121 0 0 0 0 9.670156 0 -.2383199576340929 "21043" 383.7216 212 0 0 1 0 0 0 -.47450342632685916 "15002" 297.8626 152 1 1 0 2 101.79111 0 -.7405601489787412 "17027" 493.183 171 0 1 0 0 9.694391 0 .5118759227271751 "05014" 441.5103 51 0 1 0 0 50.89556 0 3.052973628870931 "02014" 310.817 21 1 0 0 0 16.965185 0 -1.1729055417514695 "22005" 294.7763 222 0 1 0 0 1.5268667 0 .860137215195725 "17032" 177.3949 171 0 1 0 0 54.28859 0 1.3457775437745838 "19010" 201.6258 191 0 1 0 0 2.2620246 0 1.0858306852204567 "19011" 170.6817 191 0 1 0 0 5.089556 0 -.7616071307673543 "24008" 82.3284 241 0 0 0 0 4.0716443 0 -.48414949508664645 "17005" 416.9502 172 0 0 0 0 16.965185 0 -.027396483334440776 "17023" 414.3553 172 1 0 0 0 101.79111 0 -.4271800169886727 "06038" 388.4588 62 0 0 0 0 6.786074 0 -.4931124118055506 "01014" 396.9657 12 0 0 0 0 4.847196 0 -.16262726190923735 "16013" 234.6134 162 0 0 0 0 6.022641 0 -.20062561335083703 "17012" 433.5184 172 0 0 0 0 2.2620246 0 .7387068063805651 "15008" 219.3244 152 1 0 0 0 33.93037 0 -.7081652499218105 "07006" 353.0623 72 0 0 0 0 42.41296 0 .9477729275093842 "09015" 166.6411 92 0 0 0 0 4.071645 0 -1.326667630984104 "02002" 430.9372 22 0 0 0 0 9.048099 0 -.509134866640311 "14025" 474.2442 142 0 0 0 0 13.572147 0 -.288705236932152 "06024" 385.1814 62 0 0 0 0 11.02737 0 .5440175900545187 "03043" 494.7862 32 0 0 2 0 8.14329 0 -.10708125360690628 "07006" 353.0623 72 0 1 0 0 3.223385 0 .5556016644151214 "01025" 364.8701 11 1 0 0 0 50.89556 0 -.49740898115228355 "16020" 208.5324 162 0 0 0 0 1.8850206 0 -1.1249240316384668 "16021" 145.4773 162 1 1 0 1 22.620247 0 -.9725244311511236 "20033" 249.0567 201 1 0 0 0 67.86074 0 -.6796091517527205 "17047" 408.7627 172 0 0 0 0 6.786074 0 -.8707770259839175 "06034" 377.2153 62 0 0 0 0 3.393037 0 -.00499992656713616 "02009" 415.8561 22 0 1 0 0 16.588182 0 2.0983921231359437 "25046" 210.7115 251 0 0 0 0 1.5834173 0 .8482866654772797 "03028" 383.8385 32 0 0 0 0 4.2412963 0 -1.3092995834052046 "06040" 374.1129 62 0 0 0 0 3.393037 0 -.6057290653249331 "07035" 360.6338 72 1 0 0 0 36.6448 0 .6471823873256822 "07013" 253.4089 72 1 0 0 0 79.17086 0 -1.2387824476145446 "16007" 191.709 162 0 0 0 0 1.6965185 0 .6539780550681383 "07008" 347.1472 72 1 0 0 3 168.52084 0 .06081976649467262 "02007" 275.1536 22 0 0 0 0 4.4109483 0 -.48726285886212756 "07007" 333.1601 72 0 0 0 0 16.965185 0 -.15277320997312518 "25043" 230.3937 252 1 0 0 0 81.43289 0 .2355084184970267 "06010" 383.1199 62 0 0 0 0 .9048099 0 .41244154627889124 "21032" 401.5766 212 0 0 1 1 0 0 -.9744729721056214 "14057" 465.4036 142 0 1 0 0 1.3572148 0 1.331114095603382 "15032" 211.4474 151 0 0 0 0 0 0 -1.2370125216897607 "10002" 279.2827 102 0 0 0 0 16.28658 0 .20590989997474568 "04015" 343.5223 42 1 0 0 1 54.28859 0 .40296103286780943 "15025" 310.4955 152 0 0 0 0 9.048099 0 -.6681651115018918 "03050" 443.1528 32 1 0 0 0 21.715435 0 -.585522282008272 "06035" 435.9285 62 1 0 0 1 904.8099 0 -.7303145877819389 "13016" 245.9765 132 0 0 0 0 16.965185 0 2.0257376351641216 "03002" 406.7226 32 0 0 0 0 18.096197 0 .3212616903201595 "14011" 517.8802 142 0 1 0 0 12.441135 .3333333 .35537333442783675 "05032" 573.3594 51 0 1 1 0 .16965185 0 2.6794682832144145 "05011" 288.0924 51 1 0 0 0 67.86074 0 -.781898741362883 "08020" 432.6883 82 1 0 0 0 33.93037 0 .10507800015825447 "01008" 672.4203 12 1 0 0 0 84.82593 0 -.07319974674366442 "15009" 297.1825 152 0 0 2 0 0 0 -.7185192770766162 "16008" 218.8445 162 0 1 0 0 10.179111 0 -1.1508447752977298 "15017" 288.911 151 1 1 0 0 67.86074 0 .7439100234892032 "12085" 663.2095 121 1 0 0 1 226.20247 0 -.42621138336921416 "14021" 489.3474 142 0 0 1 0 0 0 -.05922603648259058 "14006" 465.4653 142 0 0 0 0 15.834172 0 -.4451799770448089 "17013" 428.8367 172 0 0 0 0 6.786074 0 -.2391803573136902 "02047" 475.5555 22 0 0 0 0 11.310123 0 .5357359651864448 "03004" 412.5359 32 0 0 0 0 1.1310123 0 .12142710919226243 "14049" 445.7798 142 1 0 0 1 201.5464 0 -1.0138132342656636 "07016" 362.2616 72 1 0 0 0 27.144297 0 .155596722067095 "06045" 360.0294 62 0 0 0 0 0 0 -.9694810242369618 "17006" 453.8851 172 1 0 0 1 38.17167 .08333334 1.4545317730887652 "17046" 325.3251 172 0 0 0 0 19.001009 0 .41772459678200513 "03039" 406.3593 32 1 0 0 0 47.50252 0 -.7190750614795979 "20014" 328.6322 202 end * rescale variables to obtain meaningful coefficients local Varlist freecare hospitalised injury_pc foreach Var of var `Varlist' { replace `Var'=`Var'*100 } label values outcome NOYES label def NOYES 0 "No", modify label def NOYES 1 "Yes", modify label values urban URBAN label def URBAN 0 "Rural", modify label def URBAN 1 "Urban", modify label var outcome "Outcome" label var urban "Urban (vs Rural) area" label var freecare "Exemptions [per 100 persons]" label var hospitalised "Hospitalisations [per 100 persons]" label var oop_ppp2011_pc "Per capita: health expenditure [in PPP]" label var injury_pc "Per capita: injuries [per 100 persons]" label var windex "Wealth index" label var hhw "household weight" label var newstratum "Stratum" svyset psu [pweight=hhw], strata(newstratum)singleunit(certainty) * Distribution measure: Erreygers normalised concentration index conindex outcome, rankvar(windex) limits(0 1) err bounded svy mean urban freecare hospitalised oop*1_pc injury_pc [aw=hhw] ********************* RIF Determinants analysis ******************** local DepVar outcome local IndVar i.(urban) c.(freecare hospitalised oop*1_pc injury_pc) rifhdreg `DepVar' `IndVar', rif(eindex(windex) lb(0) ub(1)) retain(outcome_rif) replace iseed() scale(100) svy outreg2 using ".\temp.xls", excel label sideway replace onecol
Comment