Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Determining lag length in a panel dataset.

    Hi all,

    I'm using -xtscc- command to estimate a macroeconomic mode. This dataset set has 133 countries and 33 years (unbalanced panel).
    My question pertains to lag length used in a fixed effect model.

    Variables: dlpccarb: log of per capita carbon emissions, dlrgdp: log of per capita GDP, dlpopden: log of population density, frleg: institutional integrity, fr_lrgdp: interaction between institutional integrity and gdp, lfoss: log of fossil fuels, renew: renewables (% of eneregy consumption)

    Code:
    xtscc dlpccarb L.dlpccarb dlrgdp dlrgdp2 D.frleg D.frleg2 dlpopden  D.fr_lrgdp D.fr2_lrgdp2 D.renew D.lfoss period*, fe lag(7)
    xtscc dlpccarb L.dlpccarb dlrgdp dlrgdp2 D.frleg D.frleg2 dlpopden  D.fr_lrgdp D.fr2_lrgdp2 D.renew D.lfoss period*, fe lag(6)
    My results from both these models are pretty similar. However, standard error with lag 6 are greater than with lag 7.

    Generally, to decide on lag length we use AIC BIC. But, in the post estimation command of XTSCC I couldn't find the option of -estat ic- which we use otherwise. (Question 1). How do I decide which is more appropriate lag length?)

    I also thought of determining lag length based on -xtunitroot fisher-
    Code:
    . xtunitroot fisher lrgdp, dfuller trend lags(7)
    (551 missing values generated)
    
    Fisher-type unit-root test for lrgdp
    Based on augmented Dickey-Fuller tests
    --------------------------------------
    Ho: All panels contain unit roots           Number of panels       =    133
    Ha: At least one panel is stationary        Avg. number of periods =  32.37
    
    AR parameter: Panel-specific                Asymptotics: T -> Infinity
    Panel means:  Included
    Time trend:   Included
    Drift term:   Not included                  ADF regressions: 7 lags
    ------------------------------------------------------------------------------
                                      Statistic      p-value
    ------------------------------------------------------------------------------
     Inverse chi-squared(266)  P       349.1656       0.0005
     Inverse normal            Z         2.5666       0.9949
     Inverse logit t(659)      L*        1.5204       0.9356
     Modified inv. chi-squared Pm        3.6057       0.0002
    ------------------------------------------------------------------------------
     P statistic requires number of panels to be finite.
     Other statistics are suitable for finite or infinite number of panels.
    ------------------------------------------------------------------------------
    Code:
    . xtunitroot fisher lrgdp, dfuller trend lags(6)
    (551 missing values generated)
    
    Fisher-type unit-root test for lrgdp
    Based on augmented Dickey-Fuller tests
    --------------------------------------
    Ho: All panels contain unit roots           Number of panels       =    133
    Ha: At least one panel is stationary        Avg. number of periods =  32.37
    
    AR parameter: Panel-specific                Asymptotics: T -> Infinity
    Panel means:  Included
    Time trend:   Included
    Drift term:   Not included                  ADF regressions: 6 lags
    ------------------------------------------------------------------------------
                                      Statistic      p-value
    ------------------------------------------------------------------------------
     Inverse chi-squared(266)  P       313.2160       0.0247
     Inverse normal            Z         2.7447       0.9970
     Inverse logit t(654)      L*        1.9702       0.9754
     Modified inv. chi-squared Pm        2.0471       0.0203
    ------------------------------------------------------------------------------
     P statistic requires number of panels to be finite.
     Other statistics are suitable for finite or infinite number of panels.
    ------------------------------------------------------------------------------
    In this case, two tests suggest reject unit root and two suggest- do not reject. (Question 2). Could you please tell me which one should be the most appropriate test among the 4 (inverse chi sq, inverse normal, inverse logit and modified inv. chi-sq) to decide on lag length.

Working...
X