Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Survival analysis factor variable output (i. versus ibn.)

    Hi,

    When running the log-logistic AFT regression with the i. command, the regression runs without problems.
    However, I want to examine the effect of all the levels of the factor variables, therefore I suppress the constant term and use the ibn. command. Unfortunately, this results in a never-ending process in Stata. I hope someone is able to offer some help.

    Below the commands I have used, and the corresponding output.

    Code:
    . stset E_Date, failure(AllButDiss==1) id(Strategy_Number) enter(time P_Date) origin(time P_Date)
    
                    id:  Strategy_Number
         failure event:  AllButDiss == 1
    obs. time interval:  (E_Date[_n-1], E_Date]
     enter on or after:  time P_Date
     exit on or before:  failure
        t for analysis:  (time-origin)
                origin:  time P_Date
    
    ------------------------------------------------------------------------------
          1,197  total observations
              0  exclusions
    ------------------------------------------------------------------------------
          1,197  observations remaining, representing
          1,197  subjects
            431  failures in single-failure-per-subject data
      3,031,231  total analysis time at risk and under observation
                                                    at risk from t =         0
                                         earliest observed entry t =         0
                                              last observed exit t =     8,216
    
    . format _origin %td
    Output with the use of i.

    Code:
    . streg i.ComplexityOfStrategy i.Amount_of_addons Rushed2 i.Distance_Class Rushed_Strategy IVA IQA GDPA Hofstede Management_Participation ib(frequent).Entrytype Syndication PE_Experience PF_Experience PE_Experience_Total PF_Experience_Total logPFassets HOT_IPO HOT_MNA i.CountryGroup i.Exitgroup i.IndustryFE, dist(loglogistic)
    
             failure _d:  AllButDiss == 1
       analysis time _t:  (E_Date-origin)
                 origin:  time P_Date
      enter on or after:  time P_Date
                     id:  Strategy_Number
    
    Fitting constant-only model:
    
    Iteration 0:   log likelihood = -794.10373  
    Iteration 1:   log likelihood = -641.39899  
    Iteration 2:   log likelihood = -625.25804  
    Iteration 3:   log likelihood = -622.63158  
    Iteration 4:   log likelihood = -622.62781  
    Iteration 5:   log likelihood = -622.62781  
    
    Fitting full model:
    
    Iteration 0:   log likelihood = -622.62781  (not concave)
    Iteration 1:   log likelihood = -352.75977  
    Iteration 2:   log likelihood = -248.90424  
    Iteration 3:   log likelihood = -218.59155  
    Iteration 4:   log likelihood = -216.41335  
    Iteration 5:   log likelihood = -216.39369  
    Iteration 6:   log likelihood = -216.39088  
    Iteration 7:   log likelihood =  -216.3904  
    Iteration 8:   log likelihood = -216.39029  
    Iteration 9:   log likelihood = -216.39027  
    Iteration 10:  log likelihood = -216.39026  
    
    Loglogistic AFT regression
    
    No. of subjects =          917                  Number of obs    =         917
    No. of failures =          299
    Time at risk    =      2162758
                                                    LR chi2(59)      =      812.48
    Log likelihood  =   -216.39026                  Prob > chi2      =      0.0000
    
    ----------------------------------------------------------------------------------------------------------------------
                                                      _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------------------------------------+----------------------------------------------------------------
                                    ComplexityOfStrategy |
                                            Less simple  |  -.0954882   .0552878    -1.73   0.084    -.2038503    .0128738
                                            Complicated  |   .0107155   .1176821     0.09   0.927    -.2199372    .2413682
                                                Hardest  |   .0024944   .1019187     0.02   0.980    -.1972626    .2022514
                                                         |
                                        Amount_of_addons |
                                                    Two  |   .0456722   .0675602     0.68   0.499    -.0867434    .1780878
                                                  Three  |    .143727   .0881328     1.63   0.103    -.0290101    .3164641
                                                   More  |    .175721    .090347     1.94   0.052    -.0013558    .3527978
                                                         |
                                                 Rushed2 |  -.2387015   .0614137    -3.89   0.000    -.3590701    -.118333
                                                         |
                                          Distance_Class |
                                                  Close  |  -.1921864   .1024587    -1.88   0.061    -.3930018     .008629
                                                    Far  |  -.1300751   .0847157    -1.54   0.125    -.2961148    .0359645
                                               Furthest  |  -.1107476   .1129013    -0.98   0.327    -.3320302    .1105349
                                                         |
                                         Rushed_Strategy |   -.144368   .0963647    -1.50   0.134    -.3332394    .0445033
                                                     IVA |   .0835171   .0710105     1.18   0.240    -.0556609    .2226951
                                                     IQA |   .1179008   .0664508     1.77   0.076    -.0123404    .2481419
                                                    GDPA |   .0739022   .0862538     0.86   0.392    -.0951521    .2429566
                                                Hofstede |  -.0141526   .0756615    -0.19   0.852    -.1624463    .1341412
                                Management_Participation |  -.0003944   .0739337    -0.01   0.996    -.1453017     .144513
                                                         |
                                               Entrytype |
                                             Divisional  |   .1910839   .0765114     2.50   0.013     .0411243    .3410435
                                              Financial  |   .0607783   .0732364     0.83   0.407    -.0827625    .2043191
                                          Privatization  |   2.336045   1499.755     0.00   0.999     -2937.13    2941.802
                                         Public Private  |  -.0417583   .1592139    -0.26   0.793    -.3538118    .2702952
                                           Receivership  |   .1329239   .4155704     0.32   0.749     -.681579    .9474268
                                                         |
                                             Syndication |   -.065033   .0715985    -0.91   0.364    -.2053634    .0752974
                                           PE_Experience |  -.0706476   .0863322    -0.82   0.413    -.2398557    .0985604
                                           PF_Experience |  -.0175077   .0674334    -0.26   0.795    -.1496746    .1146593
                                     PE_Experience_Total |  -.0020519   .0027999    -0.73   0.464    -.0075396    .0034359
                                     PF_Experience_Total |  -.0128685   .0117465    -1.10   0.273    -.0358913    .0101542
                                             logPFassets |   .0104936   .0133145     0.79   0.431    -.0156024    .0365896
                                                 HOT_IPO |   -.035915   .0673371    -0.53   0.594    -.1678933    .0960633
                                                 HOT_MNA |  -1.332052   .1012851   -13.15   0.000    -1.530567   -1.133537
                                                         |
                                            CountryGroup |
                                         United Kingdom  |   .0518508   .1062872     0.49   0.626    -.1564683    .2601698
                                                   Asia  |  -.2274857   .2098015    -1.08   0.278     -.638689    .1837177
                                              Australia  |  -.2815091   .2057906    -1.37   0.171    -.6848514    .1218331
                                          United States  |  -.1388959   .1206453    -1.15   0.250    -.3753563    .0975646
                                         Western Europe  |   .0622211   .1006128     0.62   0.536    -.1349763    .2594185
                                         Rest of Europe  |   .1227931   .1191162     1.03   0.303    -.1106704    .3562566
                                          Rest of world  |  -.6918487   .2667168    -2.59   0.009    -1.214604   -.1690933
                                                 Canada  |   .1686683   .1844434     0.91   0.360    -.1928342    .5301707
                                                         |
                                               Exitgroup |
                                           Post Dot-com  |   .5940238   .3330951     1.78   0.075    -.0588305    1.246878
                                          Buyout Growth  |   .2989711   .3477749     0.86   0.390    -.3826552    .9805974
                                            Buyout peak  |   1.198395   .3562699     3.36   0.001     .5001184    1.896671
                                       Financial Crisis  |   .6131937    .343153     1.79   0.074    -.0593738    1.285761
                                  Post-Financial Crisis  |   2.238238   .3456952     6.47   0.000     1.560688    2.915789
                                           Recent years  |   2.399773   .3346468     7.17   0.000     1.743877    3.055669
                                                         |
                                              IndustryFE |
          Administrative and Support Service Activities  |   .1317598   .1558593     0.85   0.398    -.1737189    .4372385
                     Arts, Entertainment adn Recreation  |  -.1493985   .1943511    -0.77   0.442    -.5303196    .2315227
                                            Constrution  |  -.2964692   .2165589    -1.37   0.171    -.7209169    .1279784
                                              Education  |   .1146167    .226205     0.51   0.612     -.328737    .5579704
                 Electricity, Gas, Steam, and AC supply  |  -.1123549   .2480989    -0.45   0.651    -.5986199    .3739101
                     Financial and Insurance Activities  |  -.0441494    .198536    -0.22   0.824    -.4332728    .3449741
                Human Health and Social Work Activities  |   .0164787   .1491182     0.11   0.912    -.2757875    .3087449
                          Information and Communication  |  -.0435149   .1401087    -0.31   0.756    -.3181228    .2310931
                                          Manufacturing  |    .127394   .1372691     0.93   0.353    -.1416484    .3964365
                               Other Service Activities  |  -.0300531    .222353    -0.14   0.892    -.4658569    .4057507
    Professional, Scientific, and Technical Motorcycles  |  -.0745649   .1480577    -0.50   0.615    -.3647528    .2156229
                      Public Administration adn Defence  |   2.759867   407.9724     0.01   0.995    -796.8514    802.3712
                                 Real Estate Activities  |     -.1176   .2303223    -0.51   0.610    -.5690234    .3338233
                                  Transport and Storage  |  -.1036479    .176026    -0.59   0.556    -.4486525    .2413568
                                           Water Supply  |  -.6442967   .2487774    -2.59   0.010    -1.131891    -.156702
                             Wholesale and Retail Trade  |    .188224   .1475216     1.28   0.202     -.100913     .477361
                                                         |
                                                   _cons |   6.542539   .3996965    16.37   0.000     5.759148    7.325929
    -----------------------------------------------------+----------------------------------------------------------------
                                                /lngamma |  -1.447804   .0479036   -30.22   0.000    -1.541694   -1.353915
    -----------------------------------------------------+----------------------------------------------------------------
                                                   gamma |   .2350859   .0112615                      .2140183    .2582273
    When using ibn.

    Code:
    . streg ibn.ComplexityOfStrategy ibn.Amount_of_addons Rushed2 ibn.Distance_Class Rushed_Strategy IVA IQA GDPA Hofstede Management_Participation ib(frequent).Entrytype Syndication PE_Experience PF_Experience PE_Experience_Total PF_Experience_Total logPFassets HOT_IPO HOT_MNA ibn.CountryGroup ibn.Exitgroup ibn.IndustryFE, noconstant distribution(loglogistic)
    
             failure _d:  AllButDiss == 1
       analysis time _t:  (E_Date-origin)
                 origin:  time P_Date
      enter on or after:  time P_Date
                     id:  Strategy_Number
    note: 4.Amount_of_addons omitted because of collinearity
    note: 4.Distance_Class omitted because of collinearity
    note: 9.CountryGroup omitted because of collinearity
    note: 7.Exitgroup omitted because of collinearity
    note: 17.IndustryFE omitted because of collinearity
    Fitting full model:
    
    Iteration 0:   log likelihood = -1277.4143  (not concave)
    Iteration 1:   log likelihood = -964.59332  (not concave)
    Iteration 2:   log likelihood = -716.47672  (not concave)
    Iteration 3:   log likelihood = -576.60045  (not concave)
    Iteration 4:   log likelihood = -477.67092  (not concave)
    Iteration 5:   log likelihood = -430.82136  (not concave)
    Iteration 6:   log likelihood = -407.18757  (not concave)
    Iteration 7:   log likelihood =  -388.9725  (not concave)
    Iteration 8:   log likelihood = -374.02856  (not concave)
    Iteration 9:   log likelihood = -362.46854  (not concave)
    Iteration 10:  log likelihood = -353.54827  (not concave)
    Iteration 11:  log likelihood = -347.93093  (not concave)
    Iteration 12:  log likelihood = -342.38816  (not concave)
    Iteration 13:  log likelihood =  -330.3993  (not concave)
    Iteration 14:  log likelihood = -327.98006  (not concave)
    Iteration 15:  log likelihood = -325.48768  (not concave)
    Iteration 16:  log likelihood =  -323.8431  (not concave)
    Iteration 17:  log likelihood = -322.35456  (not concave)
    Iteration 18:  log likelihood = -320.75957  (not concave)
    Iteration 19:  log likelihood = -318.08191  (not concave)

    Kind regards,

    Michael

  • #2
    An effect is a comparison of groups, e.g. women live on average 3 years longer than men. Since it is a comparison, there always has to be a reference. What ibn. gives you are not effects but levels, e.g. men live on average 80 years and women 83. So what you are looking for is not ibn. but contrast with the gw. prefix. See help contrast.
    ---------------------------------
    Maarten L. Buis
    University of Konstanz
    Department of history and sociology
    box 40
    78457 Konstanz
    Germany
    http://www.maartenbuis.nl
    ---------------------------------

    Comment


    • #3
      Dear Maarten,

      Thank you very much for your quick reply, really appreciate the help.
      Below are my commands and outputs:

      Code:
      . contrast gw.ComplexityOfStrategy
      
      Contrasts of marginal linear predictions
      
      Margins      : asbalanced
      
      ----------------------------------------------------------
                             |         df        chi2     P>chi2
      -----------------------+----------------------------------
      _t                     |
        ComplexityOfStrategy |
         (Simplest vs mean)  |          1        0.97     0.3243
      (Less simple vs mean)  |          1        3.30     0.0693
      (Complicated vs mean)  |          1        0.23     0.6330
          (Hardest vs mean)  |          1        0.24     0.6264
                      Joint  |          3        3.55     0.3147
      ----------------------------------------------------------
      
      ------------------------------------------------------------------------
                             |   Contrast   Std. Err.     [95% Conf. Interval]
      -----------------------+------------------------------------------------
      _t                     |
        ComplexityOfStrategy |
         (Simplest vs mean)  |   .0355936   .0361138     -.0351881    .1063753
      (Less simple vs mean)  |  -.0598947   .0329786     -.1245316    .0047423
      (Complicated vs mean)  |   .0463091   .0969774     -.1437631    .2363812
          (Hardest vs mean)  |    .038088   .0782376     -.1152549    .1914309
      ------------------------------------------------------------------------
      Code:
      . contrast gw.Amount_of_addons
      
      Contrasts of marginal linear predictions
      
      Margins      : asbalanced
      
      -----------------------------------------------------
                        |         df        chi2     P>chi2
      ------------------+----------------------------------
      _t                |
       Amount_of_addons |
      (Single vs mean)  |          1        3.14     0.0764
         (Two vs mean)  |          1        0.02     0.8981
       (Three vs mean)  |          1        1.79     0.1810
        (More vs mean)  |          1        3.10     0.0782
                 Joint  |          3        5.26     0.1534
      -----------------------------------------------------
      
      -------------------------------------------------------------------
                        |   Contrast   Std. Err.     [95% Conf. Interval]
      ------------------+------------------------------------------------
      _t                |
       Amount_of_addons |
      (Single vs mean)  |  -.0391943   .0221224     -.0825535    .0041648
         (Two vs mean)  |   .0064779   .0505841     -.0926651    .1056208
       (Three vs mean)  |   .1045327   .0781498     -.0486381    .2577034
        (More vs mean)  |   .1365267   .0775276     -.0154246     .288478
      -------------------------------------------------------------------
      Is there anything different in terms of interpretation?
      A positive (negative) regression coefficient indicates deceleration (acceleration) of the time to exit?

      Thank you very much.

      Kind regards,

      Michael

      Comment

      Working...
      X