Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Moderation in ordered regression

    Hello!

    For my thesis, I have to do some regressions in STATA. I am not very good with STATA at the moment, so I would like to check if some things are correct with you. Help is greatly appreciated.

    My regression is testing is 'green attitude' is positively related to 'green buying' (if you care about the environmental impact of the products you buy, you buy more green products). Secondly, I am testing whether the impact of attitude on green buying will be moderated by the trust in ecolabels. (If you trust that ecolabels are reliable, it's easier to differentiate products in the supermarket and convert your attitude into actual behaviour).

    Click image for larger version

Name:	image_15905.png
Views:	1
Size:	18.6 KB
ID:	1519806
    Control variables: Age, gender, country

    I have two questions.

    1. As my dependent variable (green buying) is on a likert scale from 'I often buy green products' to 'I never buy green products', I assume that I have to use an ordinal logistic regression?
    Would this be the correct regression?
    . ologit greenbuying attitude age i.gender i.country

    2. To test for moderation, I am not sure what I have to do. For 'Trust in ecolabels' I have 4 answers: (Fully confident, Fairly confident, Not very confident, Not at all confident). Would that mean I have to make 3 interaction terms: Attitude*Fully confident, Attitude*Fairly confident and Attitude*Not very confident? How would this be tested for moderation?

    I really hope I explained this as clear as possible. If it's not clear please let me know.

  • #2
    If I run . ologit greenbuying i.attitude##i.trust age i.gender i.country, my results become hard to interpret. I don't think that is correct.

    . ologit greenbuying i.attitude##i.trust age i.gender i.country

    Iteration 0: log likelihood = -29908.635
    Iteration 1: log likelihood = -27708.184
    Iteration 2: log likelihood = -27593.268
    Iteration 3: log likelihood = -27586.562
    Iteration 4: log likelihood = -27586.561

    Ordered logistic regression Number of obs = 25,296
    LR chi2(53) = 4644.15
    Prob > chi2 = 0.0000
    Log likelihood = -27586.561 Pseudo R2 = 0.0776

    ------------------------------------------------------------------------------------------------------------
    greenbuying | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------------------------------------+----------------------------------------------------------------
    attitude |
    Fairly important | .8201081 .0728374 11.26 0.000 .6773493 .9628669
    Not very important | 1.875801 .1250258 15.00 0.000 1.630755 2.120847
    Not at all important | 3.323528 .2112647 15.73 0.000 2.909457 3.737599
    DK/NA | 1.419003 .3087574 4.60 0.000 .8138496 2.024156
    |
    trust |
    Fairly confident | .1142917 .054232 2.11 0.035 .0079989 .2205846
    Not very confident | .6896144 .0633293 10.89 0.000 .5654912 .8137376
    Not at all confident | 1.20398 .1102265 10.92 0.000 .9879401 1.42002
    DK/NA | .9931597 .1831172 5.42 0.000 .6342565 1.352063
    |
    attitude#trust |
    Fairly important#Fairly confident | -.0209008 .0815317 -0.26 0.798 -.1807001 .1388985
    Fairly important#Not very confident | -.1864211 .0912053 -2.04 0.041 -.3651802 -.0076621
    Fairly important#Not at all confident | -.272597 .1548921 -1.76 0.078 -.5761799 .030986
    Fairly important#DK/NA | -.4660487 .2755669 -1.69 0.091 -1.00615 .0740525
    Not very important#Fairly confident | -.0688794 .1370753 -0.50 0.615 -.337542 .1997831
    Not very important#Not very confident | -.2797692 .1430137 -1.96 0.050 -.5600709 .0005324
    Not very important#Not at all confident | -.1287484 .1979626 -0.65 0.515 -.5167481 .2592513
    Not very important#DK/NA | .2314287 .3662841 0.63 0.527 -.486475 .9493325
    Not at all important#Fairly confident | -.5627099 .2523146 -2.23 0.026 -1.057237 -.0681823
    Not at all important#Not very confident | -.8234295 .2519569 -3.27 0.001 -1.317256 -.3296031
    Not at all important#Not at all confident | -.3256793 .2883814 -1.13 0.259 -.8908965 .239538
    Not at all important#DK/NA | -.8262591 .5158616 -1.60 0.109 -1.837329 .1848109
    DK/NA#Fairly confident | -.2344112 .3548998 -0.66 0.509 -.930002 .4611796
    DK/NA#Not very confident | .2175433 .3740203 0.58 0.561 -.515523 .9506096
    DK/NA#Not at all confident | .0775005 .4761514 0.16 0.871 -.855739 1.01074
    DK/NA#DK/NA | .2721843 .4673382 0.58 0.560 -.6437818 1.18815
    |
    age | -.0065858 .0007687 -8.57 0.000 -.0080924 -.0050792
    |
    gender |
    Female | -.0702839 .0256338 -2.74 0.006 -.1205252 -.0200426
    |
    country |
    BE - Belgium | .2801669 .0899557 3.11 0.002 .1038569 .456477
    NL - The Netherlands | .004789 .0897695 0.05 0.957 -.171156 .180734
    DE - Germany | -.7021774 .090636 -7.75 0.000 -.8798206 -.5245341
    IT - Italy | .990328 .0906194 10.93 0.000 .8127173 1.167939
    LU - Luxembourg | -.1178708 .1092301 -1.08 0.281 -.3319579 .0962163
    DK - Denmark | -.1765398 .0891486 -1.98 0.048 -.3512678 -.0018117
    IE - Ireland | .2581385 .0893675 2.89 0.004 .0829814 .4332956
    GB - United Kingdom | .364386 .0900674 4.05 0.000 .1878572 .5409149
    GR - Greece | -.1875929 .0911587 -2.06 0.040 -.3662607 -.008925
    ES - Spain | -.0963934 .0904821 -1.07 0.287 -.2737351 .0809483
    PT - Portugal | .3358904 .0910432 3.69 0.000 .1574489 .5143318
    FI - Finland | .200702 .0893958 2.25 0.025 .0254894 .3759146
    SE - Sweden | -.1520133 .0887996 -1.71 0.087 -.3260573 .0220308
    AT - Austria | -.9390364 .0911822 -10.30 0.000 -1.11775 -.7603225
    CY - Cyprus (Republic) | .2144357 .1121542 1.91 0.056 -.0053825 .4342538
    CZ - Czech Republic | .4995264 .0897431 5.57 0.000 .3236332 .6754195
    EE - Estonia | .0337007 .0923465 0.36 0.715 -.1472951 .2146965
    HU - Hungary | -.0934508 .0908474 -1.03 0.304 -.2715085 .0846069
    LV - Latvia | .076776 .0917092 0.84 0.402 -.1029707 .2565228
    LT - Lithuania | .4364923 .0923275 4.73 0.000 .2555337 .6174509
    MT - Malta | .4093672 .1172133 3.49 0.000 .1796333 .6391011
    PL - Poland | -.0684919 .0914739 -0.75 0.454 -.2477775 .1107937
    SK - Slovakia | -.0050784 .0900455 -0.06 0.955 -.1815644 .1714076
    SI - Slovenia | -.1914782 .0898398 -2.13 0.033 -.3675609 -.0153955
    BG - Bulgaria | 1.234301 .0922793 13.38 0.000 1.053437 1.415165
    RO - Romania | .3980116 .0930486 4.28 0.000 .2156397 .5803836
    HR - Croatia | .23088 .0904485 2.55 0.011 .0536042 .4081557
    -------------------------------------------+----------------------------------------------------------------
    /cut1 | -.428959 .0899918 -.6053397 -.2525783
    /cut2 | 2.591908 .0917389 2.412103 2.771712
    /cut3 | 3.0219 .0923916 2.840816 3.202984
    /cut4 | 3.825578 .0944799 3.640401 4.010755
    /cut5 | 4.196897 .0960455 4.008651 4.385142
    ------------------------------------------------------------------------------------------------------------

    Comment


    • #3
      Hi Jacob. Your output is very hard to read. You should use code tags. See pt 12 of the Statalist FAQ on answering questions effectively.

      I am not sure what exactly it is you don't like about your results. What exactly is it you find hard to interpret? But I find marginal effects and adjusted predictions often aid interpretation. See

      https://www3.nd.edu/~rwilliam/xsoc73994/Margins05.pdf

      Note that this is is the 5th handout on margins. If you need more background first, the related handouts are at

      https://www3.nd.edu/~rwilliam/xsoc73994/index.html

      If that isn't really what you want, I suggest reposting your code and output using code tags and being more specific about what you find is hard to interpret.

      -------------------------------------------
      Richard Williams, Notre Dame Dept of Sociology
      StataNow Version: 19.5 MP (2 processor)

      EMAIL: [email protected]
      WWW: https://www3.nd.edu/~rwilliam

      Comment


      • #4
        Code:
        . ologit greenbuying i.attitude##i.trust age i.gender i.country 
        
        Iteration 0:   log likelihood = -29908.635  
        Iteration 1:   log likelihood = -27708.184  
        Iteration 2:   log likelihood = -27593.268  
        Iteration 3:   log likelihood = -27586.562  
        Iteration 4:   log likelihood = -27586.561  
        
        Ordered logistic regression                     Number of obs     =     25,296
                                                        LR chi2(53)       =    4644.15
                                                        Prob > chi2       =     0.0000
        Log likelihood = -27586.561                     Pseudo R2         =     0.0776
        
        ------------------------------------------------------------------------------------------------------------
                                       greenbuying |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -------------------------------------------+----------------------------------------------------------------
                                          attitude |
                                 Fairly important  |   .8201081   .0728374    11.26   0.000     .6773493    .9628669
                               Not very important  |   1.875801   .1250258    15.00   0.000     1.630755    2.120847
                             Not at all important  |   3.323528   .2112647    15.73   0.000     2.909457    3.737599
                                            DK/NA  |   1.419003   .3087574     4.60   0.000     .8138496    2.024156
                                                   |
                                             trust |
                                 Fairly confident  |   .1142917    .054232     2.11   0.035     .0079989    .2205846
                               Not very confident  |   .6896144   .0633293    10.89   0.000     .5654912    .8137376
                             Not at all confident  |    1.20398   .1102265    10.92   0.000     .9879401     1.42002
                                            DK/NA  |   .9931597   .1831172     5.42   0.000     .6342565    1.352063
                                                   |
                                    attitude#trust |
                Fairly important#Fairly confident  |  -.0209008   .0815317    -0.26   0.798    -.1807001    .1388985
              Fairly important#Not very confident  |  -.1864211   .0912053    -2.04   0.041    -.3651802   -.0076621
            Fairly important#Not at all confident  |   -.272597   .1548921    -1.76   0.078    -.5761799     .030986
                           Fairly important#DK/NA  |  -.4660487   .2755669    -1.69   0.091     -1.00615    .0740525
              Not very important#Fairly confident  |  -.0688794   .1370753    -0.50   0.615     -.337542    .1997831
            Not very important#Not very confident  |  -.2797692   .1430137    -1.96   0.050    -.5600709    .0005324
          Not very important#Not at all confident  |  -.1287484   .1979626    -0.65   0.515    -.5167481    .2592513
                         Not very important#DK/NA  |   .2314287   .3662841     0.63   0.527     -.486475    .9493325
            Not at all important#Fairly confident  |  -.5627099   .2523146    -2.23   0.026    -1.057237   -.0681823
          Not at all important#Not very confident  |  -.8234295   .2519569    -3.27   0.001    -1.317256   -.3296031
        Not at all important#Not at all confident  |  -.3256793   .2883814    -1.13   0.259    -.8908965     .239538
                       Not at all important#DK/NA  |  -.8262591   .5158616    -1.60   0.109    -1.837329    .1848109
                           DK/NA#Fairly confident  |  -.2344112   .3548998    -0.66   0.509     -.930002    .4611796
                         DK/NA#Not very confident  |   .2175433   .3740203     0.58   0.561     -.515523    .9506096
                       DK/NA#Not at all confident  |   .0775005   .4761514     0.16   0.871     -.855739     1.01074
                                      DK/NA#DK/NA  |   .2721843   .4673382     0.58   0.560    -.6437818     1.18815
                                                   |
                                               age |  -.0065858   .0007687    -8.57   0.000    -.0080924   -.0050792
                                                   |
                                            gender |
                                           Female  |  -.0702839   .0256338    -2.74   0.006    -.1205252   -.0200426
                                                   |
                                           country |
                                     BE - Belgium  |   .2801669   .0899557     3.11   0.002     .1038569     .456477
                             NL - The Netherlands  |    .004789   .0897695     0.05   0.957     -.171156     .180734
                                     DE - Germany  |  -.7021774    .090636    -7.75   0.000    -.8798206   -.5245341
                                       IT - Italy  |    .990328   .0906194    10.93   0.000     .8127173    1.167939
                                  LU - Luxembourg  |  -.1178708   .1092301    -1.08   0.281    -.3319579    .0962163
                                     DK - Denmark  |  -.1765398   .0891486    -1.98   0.048    -.3512678   -.0018117
                                     IE - Ireland  |   .2581385   .0893675     2.89   0.004     .0829814    .4332956
                              GB - United Kingdom  |    .364386   .0900674     4.05   0.000     .1878572    .5409149
                                      GR - Greece  |  -.1875929   .0911587    -2.06   0.040    -.3662607    -.008925
                                       ES - Spain  |  -.0963934   .0904821    -1.07   0.287    -.2737351    .0809483
                                    PT - Portugal  |   .3358904   .0910432     3.69   0.000     .1574489    .5143318
                                     FI - Finland  |    .200702   .0893958     2.25   0.025     .0254894    .3759146
                                      SE - Sweden  |  -.1520133   .0887996    -1.71   0.087    -.3260573    .0220308
                                     AT - Austria  |  -.9390364   .0911822   -10.30   0.000     -1.11775   -.7603225
                           CY - Cyprus (Republic)  |   .2144357   .1121542     1.91   0.056    -.0053825    .4342538
                              CZ - Czech Republic  |   .4995264   .0897431     5.57   0.000     .3236332    .6754195
                                     EE - Estonia  |   .0337007   .0923465     0.36   0.715    -.1472951    .2146965
                                     HU - Hungary  |  -.0934508   .0908474    -1.03   0.304    -.2715085    .0846069
                                      LV - Latvia  |    .076776   .0917092     0.84   0.402    -.1029707    .2565228
                                   LT - Lithuania  |   .4364923   .0923275     4.73   0.000     .2555337    .6174509
                                       MT - Malta  |   .4093672   .1172133     3.49   0.000     .1796333    .6391011
                                      PL - Poland  |  -.0684919   .0914739    -0.75   0.454    -.2477775    .1107937
                                    SK - Slovakia  |  -.0050784   .0900455    -0.06   0.955    -.1815644    .1714076
                                    SI - Slovenia  |  -.1914782   .0898398    -2.13   0.033    -.3675609   -.0153955
                                    BG - Bulgaria  |   1.234301   .0922793    13.38   0.000     1.053437    1.415165
                                     RO - Romania  |   .3980116   .0930486     4.28   0.000     .2156397    .5803836
                                     HR - Croatia  |     .23088   .0904485     2.55   0.011     .0536042    .4081557
        -------------------------------------------+----------------------------------------------------------------
                                             /cut1 |   -.428959   .0899918                     -.6053397   -.2525783
                                             /cut2 |   2.591908   .0917389                      2.412103    2.771712
                                             /cut3 |     3.0219   .0923916                      2.840816    3.202984
                                             /cut4 |   3.825578   .0944799                      3.640401    4.010755
                                             /cut5 |   4.196897   .0960455                      4.008651    4.385142
        ------------------------------------------------------------------------------------------------------------

        Hi Richard, thank you. I didn't realise how to post code correctly, it should work now. The margins document is really helpful.

        First off, is ologit the correct regression type here? And if so, is using i.attitude##i.trust the correct way to test whether the impact of attitude on green buying will be moderated by the trust in ecolabels? How do I decide whether it is or not from my results? I looked online and read the articles you sent, but I still do not see how I can decide this.

        I am sorry if this seems basic to you,

        Comment


        • #5
          Hello all,

          I am still struggling with how to interpret my results. Can someone help me?
          Only: Not at all important#Not very confident is significant, what does this mean regarding moderation? Thank you in advance

          Comment

          Working...
          X