Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • PPMLHDFE Gravity model for remittances

    Dear Tom Zylkin and Joao Santos Silva

    I hope you are doing well, I am using a gravity model in the context of bilateral remittances which is basically oneway flows in contrast to trade, export and import.

    home is recipient country and the host is the remittances sending country.

    however, when I use the second specifications with pairid, the results significantly changes.

    ppmlhdfe remit lgdpp lgdpp_hos lcost2 lmig_st , absorb(home host year) vce(robust) ------1

    ppmlhdfe remit lgdpc lgdpc_hos mig_st lcost2 , absorb(pairid year) vce(robust)-----------2

    Also, the z-value of migrant_stock variable is very high in specification 1. why with paired id the results significantly changes.

    Do I stick to specification 1, is there any other way to deals with this specific problem.

    Thanks for your comments on it.

    PHP Code:
    ppmlhdfe remit lgdpp lgdpp_hos  lcost2 lmig_st absorb(home host yearvce(robust)
    (
    dropped 14 observations that are either singletons or separated by a fixed effect)
    Iteration 1:   deviance 1.790e+05                  itol 1.0e-04  subiters 8   min(eta) =  -3.80  [p  
    Iteration 2:   deviance 6.237e+04  eps 1.87e+00  itol 1.0e-04  subiters 6   min(eta) =  -5.67  [   ] 
    Iteration 3:   deviance 4.722e+04  eps 3.21e-01  itol 1.0e-04  subiters 6   min(eta) =  -6.73  [   ] 
    Iteration 4:   deviance 4.518e+04  eps 4.52e-02  itol 1.0e-04  subiters 6   min(eta) =  -6.97  [   ] 
    Iteration 5:   deviance 4.489e+04  eps 6.39e-03  itol 1.0e-04  subiters 4   min(eta) =  -6.98  [   ] 
    Iteration 6:   deviance 4.486e+04  eps 7.14e-04  itol 1.0e-04  subiters 8   min(eta) =  -7.44  [p  
    Iteration 7:   deviance 4.486e+04  eps 6.40e-05  itol 1.0e-04  subiters 3   min(eta) =  -8.13  [   ] 
    Iteration 8:   deviance 4.486e+04  eps 6.91e-06  itol 1.0e-06  subiters 3   min(eta) =  -8.53  [   ] 
    Iteration 9:   deviance 4.486e+04  eps 2.79e-07  itol 1.0e-06  subiters 2   min(eta) =  -8.63  [   ] 
    Iteration 10:  deviance 4.486e+04  eps 7.04e-10  itol 1.0e-08  subiters 2   min(eta) =  -8.63  
    Iteration 11:  deviance 4.486e+04  eps 2.44e-14  itol 1.0e-10  subiters 13  min(eta) =  -8.63  [pso
    Iteration 12:  deviance 4.486e+04  eps 3.80e-14  itol 1.0e-10  subiters 13  min(eta) =  -8.63  [pso
    ------------------------------------------------------------------------------------------------------------
    (
    legendpexact partial-out   sexact solver   oepsilon below tolerance)
    Converged in 12 iterations and 74 HDFE sub-iterations (tol 1.0e-08)

    HDFE PPML regression                              Noof obs      =      1,100
    Absorbing 3 HDFE groups                           Residual df     
    =        985
                                                      Wald chi2
    (4)    =    1902.16
    Deviance             
    =  44859.05854               Prob chi2     =     0.0000
    Log pseudolikelihood 
    = -26589.13444               Pseudo R2       =     0.9825
    ------------------------------------------------------------------------------
                 |               
    Robust
           remit 
    |      Coef.   StdErr.      z    P>|z|     [95ConfInterval]
    -------------+----------------------------------------------------------------
           
    lgdpp |  -.8177773   .1726019    -4.74   0.000    -1.156071   -.4794838
       lgdpp_hos 
    |   1.174428   .5027084     2.34   0.019      .189138    2.159719
          lcost2 
    |  -.0138842   .0428241    -0.32   0.746    -.0978179    .0700495
         lmig_st 
    |   .9379309     .02305    40.69   0.000     .8927538     .983108
           _cons 
    |  -11.40849    8.36286    -1.36   0.173    -27.79939    4.982417
    ------------------------------------------------------------------------------

    Absorbed degrees of freedom:
    -----------------------------------------------------+
     
    Absorbed FE Categories  Redundant  NumCoefs |
    -------------+---------------------------------------|
            
    home |        76           0          76     |
            
    host |        30           1          29     |
            
    year |         7           1           6    ?|
    -----------------------------------------------------+
    ? = 
    number of redundant parameters may be higher 
    PHP Code:
    ppmlhdfe remit  lgdpc lgdpc_hos lcost2  lmig_st   absorb(pairid year vce(robust)
    (
    dropped 54 observations that are either singletons or separated by a fixed effect)
    Iteration 1:   deviance 1.394e+05                  itol 1.0e-04  subiters 5   min(eta) =  -2.61  [p  
    Iteration 2:   deviance 3.346e+04  eps 3.17e+00  itol 1.0e-04  subiters 4   min(eta) =  -3.60  [   ] 
    Iteration 3:   deviance 1.893e+04  eps 7.67e-01  itol 1.0e-04  subiters 3   min(eta) =  -4.59  [   ] 
    Iteration 4:   deviance 1.644e+04  eps 1.51e-01  itol 1.0e-04  subiters 3   min(eta) =  -5.58  [   ] 
    Iteration 5:   deviance 1.609e+04  eps 2.21e-02  itol 1.0e-04  subiters 3   min(eta) =  -6.53  [   ] 
    Iteration 6:   deviance 1.605e+04  eps 2.35e-03  itol 1.0e-04  subiters 4   min(eta) =  -7.40  [p  
    Iteration 7:   deviance 1.605e+04  eps 2.08e-04  itol 1.0e-04  subiters 2   min(eta) =  -8.10  [   ] 
    Iteration 8:   deviance 1.605e+04  eps 2.07e-05  itol 1.0e-04  subiters 2   min(eta) =  -8.50  [   ] 
    Iteration 9:   deviance 1.605e+04  eps 8.18e-07  itol 1.0e-06  subiters 2   min(eta) =  -8.60  [   ] 
    Iteration 10:  deviance 1.605e+04  eps 2.16e-09  itol 1.0e-08  subiters 2   min(eta) =  -8.61  
    Iteration 11:  deviance 1.605e+04  eps 1.44e-14  itol 1.0e-10  subiters 6   min(eta) =  -8.61  [pso
    Iteration 12:  deviance 1.605e+04  eps 4.75e-16  itol 1.0e-10  subiters 6   min(eta) =  -8.61  [pso
    ------------------------------------------------------------------------------------------------------------
    (
    legendpexact partial-out   sexact solver   oepsilon below tolerance)
    Converged in 12 iterations and 42 HDFE sub-iterations (tol 1.0e-08)

    HDFE PPML regression                              Noof obs      =      1,077
    Absorbing 2 HDFE groups                           Residual df     
    =        821
                                                      Wald chi2
    (4)    =      22.02
    Deviance             
    =  16047.05859               Prob chi2     =     0.0002
    Log pseudolikelihood 
    = -12105.96398               Pseudo R2       =     0.9919
    ------------------------------------------------------------------------------
                 |               
    Robust
           remit 
    |      Coef.   StdErr.      z    P>|z|     [95ConfInterval]
    -------------+----------------------------------------------------------------
           
    lgdpc |   .0409308   .0669247     0.61   0.541    -.0902393    .1721008
       lgdpc_hos 
    |   .3785502   .0865878     4.37   0.000     .2088411    .5482592
          lcost2 
    |   .0181827   .0349164     0.52   0.603    -.0502522    .0866176
         lmig_st 
    |  -.0126245   .0722956    -0.17   0.861    -.1543212    .1290722
           _cons 
    |   1.990043   1.690595     1.18   0.239    -1.323462    5.303547
    ------------------------------------------------------------------------------ 

  • #2
    Please guide @Tom Zylkin, Joao Santos Silva thanks

    Comment


    • #3
      Dear Junaid Ahmed

      The two specifications are very different and only you can know which is the right one to answer the question you have in mind.

      Best wishes,

      Joao

      Comment


      • #4
        Joao Santos Silva thanks for it. Do you think with absorb(home host year) we also control for country-specific effect?. Do we may use simple ppml as baseline regression for this type of data.

        Comment


        • #5
          With absorb(home host year) you control for home, host, and year; no more, no less.

          Best wishes,

          Joao

          Comment

          Working...
          X