Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • How to get residuals series of many regressions?

    Hello,
    I want to run 500 regression in one command. dependent series are Y1 to Y500 and three independent variables x1, x2 and x3. following is the command (please make me correct if i am wrong):
    foreach y of varlist y1-y500 { regress `y' x1 x2 x3 } My query is how I get residuals series of each regression. Please help me..

    Thank you
    Priya

  • #2
    Code:
    forval i = 1/500{
        reg y`i' x1 x2 x3
        predict resid`i', resid
        }

    Comment


    • #3
      Your data seems to be in wide format. You can do much more and quite easily with data in a long format. In the following lines of code, I first generate a dummy data in wide format, then reshape it to a long format and then use asreg to estimate regressions for each y group with residuals. asreg can be installed from ssc and is superfast compared to estimating regressions in a loop.
      Code:
      * create a dummy data set in wide format.
      set obs 30
      gen x1 = uniform()
      gen x2 = uniform()
      gen x3 = uniform()
      forv i = 1 / 500 {
      gen y`i' = uniform()
      }
      gen i = _n
      
      * reshape the data to a long format
      reshape long y, j(d) i(i)
      
      * install asreg
      ssc install asreg
      
      * estimate regressions with residuals
      bys d: asreg y x1 x2 x3, fit
      
      list d x1 x2 x3 y _residuals in 1/10
      
           +------------------------------------------------------------+
           | d         x1         x2         x3          y   _residuals |
           |------------------------------------------------------------|
        1. | 1   .6866152   .0442154   .2297006    .872496    .31195766 |
        2. | 1   .1366463   .4884419   .6795634    .894106     .2061596 |
        3. | 1   .5551032   .9805113   .6537739   .5858005    .03577482 |
        4. | 1   .7264384   .1729307   .3200437   .5346152    -.0070024 |
        5. | 1   .4961259   .2190997    .851468   .2775184   -.31307716 |
           |------------------------------------------------------------|
        6. | 1   .3488717    .859742   .6964867   .0324792    -.5799762 |
        7. | 1   .0674011   .7720399   .0360847   .9339853     .2188379 |
        8. | 1   .1196613   .6934533   .3462876   .6546342   -.03976109 |
        9. | 1   .8506309    .748933   .0030522   .7970893    .30416002 |
       10. | 1   .0285569   .8712187   .3549416   .9684734    .25511015 |
           +------------------------------------------------------------+
      Want to read more on asreg, read this one page introduction https://fintechprofessor.com/stata-p...ions-in-stata/
      Regards
      --------------------------------------------------
      Attaullah Shah, PhD.
      Professor of Finance, Institute of Management Sciences Peshawar, Pakistan
      FinTechProfessor.com
      https://asdocx.com
      Check out my asdoc program, which sends outputs to MS Word.
      For more flexibility, consider using asdocx which can send Stata outputs to MS Word, Excel, LaTeX, or HTML.

      Comment


      • #4
        Thank you very much Wakker and Shah sir for your reply.
        @Shah sir,
        what does this command mean: set obs 30 and why we are writing this?

        Comment


        • #5
          Priya:
          if you do not -set- the number of observations before -generate- a given variable, nothing will be reported in Stata, as you can see from the following toy-example:
          Code:
          . gen A=10
          
          . list A
          
          . set obs 3
          number of observations (_N) was 0, now 3
          
          . gen B=10
          
          . list
          
               +--------+
               | A    B |
               |--------|
            1. | .   10 |
            2. | .   10 |
            3. | .   10 |
               +--------+
          
          .
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #6
            Thanks Carlo sir.

            My data is monthly time series from July 2005 to September 2017 which means 147 observations in each series. My dependent variable is Y1 to Y500.
            1. My first query is when I write the command "set obs", what should I write? Should I write set obs 147 or set obs 73,500 (147*500) as in long format it has 73,500 observation.
            2. My second query is should this command "asreg y x1 x2 x3" will run seperate regression for each Y on x1, x2 and x3? Thank you

            Comment


            • #7
              Post your real dataset or a sample out of it using the dataex (can be downloaded from ssc). In my post, I generated a fake dataset to show the application of asreg to it. Since you have your data, you do not need to generate fake data.

              Code:
              ssc install dataex
              dataex
              Concerning asreg, the code was
              Code:
               
               bys d: asreg y x1 x2 x3, fit
              the prefix bys d: is used here for estimating the regression separately for each subset of data. The variable d tracks that subset. In short, yes to your question.
              Last edited by Attaullah Shah; 11 Sep 2019, 05:17.
              Regards
              --------------------------------------------------
              Attaullah Shah, PhD.
              Professor of Finance, Institute of Management Sciences Peshawar, Pakistan
              FinTechProfessor.com
              https://asdocx.com
              Check out my asdoc program, which sends outputs to MS Word.
              For more flexibility, consider using asdocx which can send Stata outputs to MS Word, Excel, LaTeX, or HTML.

              Comment


              • #8
                Thank you Shah sir for your reply.
                with the help of command " bys d: asreg y x1 x2, fit" I am able to get residuals for my data. Now it is clear to me that there is no need to set obs command.
                But when I separately run regression for each Y in MS excel or in Eviews. then the residuals are different which i got from asreg command. The residuals values should be same. So why this happening sir ?
                My dataset (where there are Y1 to Y3 are dependent variables and X1, X2 are independent variables, from July 2005 to September 2019) is look like:


                Code:
                * Example generated by -dataex-. To install: ssc install dataex
                clear
                input float monthlyDate double(X1 X2 Y1 Y2 Y3)
                690     .02638653981399447    .04302490000452557    .01199451449561055   -.007354913030727411    -.02418466374439846
                602    -.02178811221601447    .05703899770053844    .10113564274026064  -.0012868477955049057    .005632532115114254
                591   -.015240431107463814    .17603997237102656   .029633554946398324    -.06921071593063938     .00359271903041411
                651   -.011748756048242937  .0030561088061163517    .08712111546927844    .005864275287080105    -.02130456702239847
                554     .05519409044366356    .07938988738776595   .048599785130715355     -.0215485357106322    .058114020511252806
                671    .016125836176913457  -.006492658868437734   .039548706776615136  -.0005165870150741596   -.006439038578125103
                587   -.026089120277655767     .0868088066994298    .28341777448439803     -.0629306946738789    -.10237242803888211
                654   -.026204988272239313   .002298270496052644   .004556018344032083    -.05093840860490639     .08260051893049211
                619     .07528509252174581   -.09884788674467222   -.08791482856471086    -.02372926597412328     .06463909979052998
                607     .03233566489935693   .010829973861835443  -.028356607396660984   -.005122831126895943    .014175146734359035
                590   -.005353366267338983    .06473041819611364    -.1380127046527298   -.014777751389460816   .0005976215527972728
                588    .006836976103741996   -.05569592714999593   -.13292565618302737     .06720384065337162     .07096871683974276
                559   -.010663197611191375    .10012475363679617     .6138383504301341  -.0030819755230080542   -.047539362335306395
                571  .00014665046483598038  -.021215659763704795  -.010029176476919536     .02559821914147855   -.006869664423925871
                568    .005371307522736346    .04630626969046031     .2978263998858029    .010815593131422595   -.011974184382104121
                639   -.028360787912422445   .035210373750927254     .0924971944406468    .004835456878866509    -.05529234292741607
                664   -.032717128743427124   .023562257460714275    .00952692476800096    .003409199140017881    .025757292110209894
                600     .01081035470306235   -.04797397323122907   .041397489961143445    .020297511853228926    .023064808226914157
                662    -.02621815330753055   -.04376360977089904   .012116173498547121   -.012852023333211202     .04561433171524626
                551     .03743972708419209    .05673835105812602    .02444288926497208   -.028267714534130836     .03126106231484681
                648     .05857214065069627  -.054650459375545905    -.0714837064745814   -.033336907816556516     .06913038227486797
                613    .022041879279909124   -.04701471777306566   -.09050393565310812   -.017593657972898025     .03483216015125226
                687   .0009341924426899684   .024074797507858174   .049812602781141316   .0048682141058381395    -.03338163770846861
                603  -.0026749459129589426    .01319598637195019    .05879052525623885    .004819294166790847    -.01620245139239078
                617    .002292519646038116   .013335449092528293    .03905907762502119    .016199090424298197     .03656149866142937
                567   -.006542359573396203    .06318491701805779    .39937681769539446    .006836903850457876   .0005197651735329087
                681    .011045282698392327   .009821562743024426    .07665117658736546    .019383461329673807    -.01417848863896825
                630     .04256730726696051  -.023460627672218178    .12102905667043336    .004873106591381397    .024643735331878892
                549   -.022863161517496483   -.12522983219976278   -.11485709121494228   -.014680835045026375     .03687451392448621
                599   -.025368515827457194    .03009502036576156    .12865729752333022     .00597939834411447 -.00033689369900467836
                656   -.004030720284598794  .0005153963031577242   .037877046487306026     -.0324277613270843      .0676025133259136
                578    -.07021234613949395   -.11167069862118478   -.30975155067820626   .0011562559886275914     .05628870558312554
                629    -.03342276756980009    .05359918581349932    .04523122943114229    .008740337592505386   -.013737544572640488
                546     .08552669104735565    .06036433256512017    .10176730958223186    .005530315243593917   -.028201042575244292
                668    .016585048315293116  -.012657700081089145  -.046716976483478515    -.02197503350019346   -.012461023210168749
                672   -.005000929676929167   -.06068374686373203    -.1303547142381174   -.013309229706812142    .031039289300905548
                641     .07531176730965757   -.06324212280779057   -.08631595469304748   -.013346064604485577     .04855476780192816
                622     .04450613520536156   -.11057252838530636    -.1897650862340316   .0069532070773171695     .03046417906533587
                608   -.007586483195828511    .08142832961465962   .026493448956905082    .010438619405220145    .017403401061928586
                618     .04901408260872691  -.028421368469604805   .000991883229465927   -.009210971326104208    .009350164403755716
                582     .03288574246507414    .04793964322505168    .10249480738672481     .01699231314883489   -.049108782893319644
                593 -.00021012019784896058  -.007888698736820772  -.046527242171121724   -.010133922017366449 -.00014683299534811595
                675    .004993843661136574   .018452818898229754  -.012876241190474348    .006129502304328557   -.011169632690305055
                645     .02980941962626038    .07155093272715338    .25640017443298313   .0046376743111619795   -.031874893883960795
                644  -.0039003604138840298    .04246521644515159     .0625576463495023    .018534767940747973    .008309102211406669
                550    .051479441833352874    .12893483354645477    .05557549993576867    .014795881079068263    -.01860680865488873
                653   -.017988713611505558   .054506873228346325    .13760913835343574  -.0030588841295529495    .032995880757778234
                574    -.00567596034408668   .010699400926707365    .23340552409156107     .07282888361788797    -.10083785983002627
                566   -.010964581745386299  -.003148218622815594    -.4574809806102459     .02175667458336428   -.011295527828339449
                614    .007716576704352149    .07077136479502687    .07524872131440774    .025152189473045837    -.00465371915554242
                643   -.041569636128964596   -.05763921166582483   -.07681599214716367    -.02701807956516991   -.008858732746112631
                673  -.0021483513888521932   -.09025624182024944   -.12921635971637105   -.020331702814306962     .03442311310514466
                583    -.02872260182126808   .013475433883809333    .08632104823815763    .006919576585663136     .03706562533308071
                598    .022551417168261964    .06684136864799514   -.01840273395416842   -.021793479718617975   -.004849499678043573
                686    .015634584741165948   .029723456687892644    .06775465753284392   -.006930056713837292   .0057763376210025474
                561     .01901656009143597    .04372707149261758    -.0861453142692353    -.05571256004788088   .0017360698010594408
                692    .013341542277384828  -.012819470909322433 -.0032750748757669357   .0005385497551796308    .023442463212276374
                564    .006115906854628414    .02888980577738069    .34737739820492763   .0019081101899439817  -.0019201917044298147
                667     .02680678547946118   -.05498795950590314    .11016704828435023    -.04783757809015148     .06101256245974376
                586   -.027273638483687093  -.022510741213680175  -.029886702096483107     .09647735774974356   -.002455061896756046
                605    .010370519092942482   .048199239240456465    .13720399387160262    .015963940726483765     -.0130644660396627
                609      .0557251559220764  .0008337146951032286    .04948762600382413     .02104929782605215    .009795087844231075
                565    .012990668883768625   -.10661869544060737    -.5277030336324345     -.0240622501875922    .027748191709931314
                552    .011924221572189309   .042316470227539316   -.02927035799875277  -.0024345100034403114    -.01082960416715676
                604     .03902535249228272   -.04979168018370136    .03822085498507351    .010549351499692272    .025550168542276097
                657    .019503528989967243   .016646044334754688    .02273580696138851    .028579370849135817    -.02716287602925641
                572     .03717401895627939    .13897481627087502    .14337909634829482    .021679814337936795    -.05508672450569002
                642     .06409478774769009   -.03262351080297927   -.06165424065336029   -.028278786409560563     .09175053604930858
                674   -.004138671883346934    .09234949115640868    .08058951195802207     .02930336394977255    -.03383644374298925
                659   -.021502449570329644  -.034094775679757584    .03613435135019154    .024070232848613947    .030005058736263808
                601    .019549330341170033  -.002142716311355584 -.0028689604157677824     .02441442443602735    .010398688994791877
                589    -.03602204128768939    -.0624370336089164     .1416401220692592    .037813037422039036     .05217611959254319
                631     .06263318146909266   .006989993709272336    .07857907960728933   -.014531398291101021     .04987303506518417
                649    .020290049437099077    .02718906519444749    .06128602112441317   -.013991290184660526    .035133428814462964
                637      .0912300551041374   -.07465854799733722   -.06333466635090926    -.03690983310362672     .06262495718247044
                634     .00407863447274448    .04724201290481994   .018902453366939666   -.014773973738321365   -.003449050645425434
                633    .030238466137313593  -.024611873128540324  -.027944810897520315   -.001108629027275692    .008966890081646894
                555    .051390158506607525    .06716598877791746  .0023238717033960887   -.014396530991192757   -.020890765549194903
                652    -.11563789048102016    .09133088806335173    .19700965949096663     .02597812526408866     -.1446294893511154
                615    .004377900687003302  -.002295134207331475    .05396326708824468     .01263858498210987    .018705215912480165
                557   -.034471840857198566    -.0695661931793848    -.2386851701754755   -.014215971105794867     .01864040164908777
                606     .04600416096976601   .011029841399184625   .030069513806459596    .010671871567129822     .02216896538987303
                625    -.04301509906045406   .058772026205247026     .3070455329549663    .006528308729473964   -.018348375763223873
                575     -.0574322832815171    .07110871246441276    .21336627922594442     .02543708959167501   -.009482323596968961
                560    -.02452440092652386    .05808028761923638      .521230046145797   -.018011496503149267   -.030213544570864774
                547    .009021602492996023    .03289669921581907    .13207283896475544 -.00035280272487685227   -.026888626812923436
                646   -.018091393555606707  -.007014592840457459    .03776713462501391     .01956281800088349   -.023867855824530965
                627    .056934072813931466   -.01607854122378937    .10256275067921926     .02639640924035069     .03161198554183506
                665   -.014587079517742095  -.017370603335194645   -.03067210625106378   -.002706394585948787    .009282654341920958
                579    .014977526289855742    .06763281222150865     .1162708738109869   -.005368599423631132     .01713802993413449
                628     .03741159308567446   -.06991795306912295   .026027079838056875    .006689160666173352    .011738521018555909
                581     -.0216037883787642   -.22360835591589712   -.13362782971439707    .026899279963932765      .0918494294176769
                592    .028915357318765045     .2848624171515663     .5188514197289154    -.09855817702784686    -.09740697367425599
                558   -.030505334747280267  -.012163209987963452    -.2803713222762772    .036356102868748984    -.02073580332225087
                689    .013502165696492645 -.0036984951337338096  -.015745095109296607    -.01842252498803304    -.01856562785297696
                650    -.03981734945977418    .06102077314509861    .14547461408996673     .07028878707210094    -.06877305377624843
                621   .0038781484704318303    .05302488060379295    .04154195377201581     .00945019362030132    .002287531574314279
                594    .015852454556496004    .06197687293170169    .07741921459723611   .0013670470454574535    .031071570536560983
                684     .00225570894793993    .05947560272925179    .05505877320324332    .019552526512571708     -.0359727216239006
                632    -.04108747339008603    .07153832178946122    .09946779639858551   .0040499912603234045    -.03955561877371175
                end
                format %tm monthlyDate

                Thank you
                Priya

                Comment


                • #9
                  The data you have posted is still in wide format. In order for asreg to work without a loop, you need to change it to a long format. Here is an example of using wide-format regression and comparing it with the official regress command of Stata.
                  Code:
                  asreg Y1 X1 X2, fit
                  
                  * And confirm using reg command
                  reg Y1 X1 X2
                  predict residual_ols, res
                  
                  list  _residuals residual_ols in 1/10
                  
                       +------------------------+
                       | _residuals   residua~s |
                       |------------------------|
                    1. | -.06921398    -.069214 |
                    2. | -.01162675   -.0116267 |
                    3. |  -.2570014   -.2570014 |
                    4. |   .0561777    .0561777 |
                    5. | -.07967452   -.0796745 |
                       |------------------------|
                    6. |  .02898477    .0289848 |
                    7. |  .12581448    .1258145 |
                    8. | -.02854256   -.0285426 |
                    9. |  .05100126    .0510013 |
                   10. | -.06077763   -.0607776 |
                       +------------------------+
                  * And after reshaping the data

                  Code:
                  reshape long Y, j(var) i(monthlyDate )
                  bys var :  asreg Y X1 X2, fit
                  
                  sort var monthlyDate
                  
                  list  _residuals residual_ols in 1/10
                  
                       +------------------------+
                       | _residuals   residua~s |
                       |------------------------|
                    1. |  .00839338    .0083934 |
                    2. |  .06185861    .0618586 |
                    3. |  .04072039    .0407204 |
                    4. | -.14654675   -.1465468 |
                    5. | -.07447146   -.0744715 |
                       |------------------------|
                    6. | -.11270819   -.1127082 |
                    7. | -.07967452   -.0796745 |
                    8. | -.10879878   -.1087988 |
                    9. | -.16775852   -.1677585 |
                   10. |  -.2931334   -.2931334 |
                       +------------------------+
                  Regards
                  --------------------------------------------------
                  Attaullah Shah, PhD.
                  Professor of Finance, Institute of Management Sciences Peshawar, Pakistan
                  FinTechProfessor.com
                  https://asdocx.com
                  Check out my asdoc program, which sends outputs to MS Word.
                  For more flexibility, consider using asdocx which can send Stata outputs to MS Word, Excel, LaTeX, or HTML.

                  Comment


                  • #10
                    Dear sir, the dataset which I have share in my above post, has been changed completely may be because of using "monthlyDate". Therefore I am posting the dataset in correct form below:


                    Code:
                    * Example generated by -dataex-. To install: ssc install dataex
                    clear
                    input int Date double(X1 X2 Y1 Y2 Y3)
                    16647     .08552669104735565   .06036433256512017    .10176730958223186    .005530315243593917   -.028201042575244292
                    16678    .009021602492996023   .03289669921581907    .13207283896475544 -.00035280272487685227   -.026888626812923436
                    16709     .03220915637771924   .07781224428689261   -.09360033485197984   .0022163791399358312    .017852734033312084
                    16739   -.022863161517496483  -.12522983219976278   -.11485709121494228   -.014680835045026375     .03687451392448621
                    16770    .051479441833352874   .12893483354645477    .05557549993576867    .014795881079068263    -.01860680865488873
                    16800     .03743972708419209   .05673835105812602    .02444288926497208   -.028267714534130836     .03126106231484681
                    16831    .011924221572189309  .042316470227539316   -.02927035799875277  -.0024345100034403114    -.01082960416715676
                    16860    .051501013954253924   .03089437580327755  -.018813101296595414     .03295111322418927    -.04982170243066069
                    16890     .05519409044366356   .07938988738776595   .048599785130715355     -.0215485357106322    .058114020511252806
                    16921    .051390158506607525   .06716598877791746  .0023238717033960887   -.014396530991192757   -.020890765549194903
                    16951    .010352655446916659  -.12153744053933128   -.13452422524406066    -.07100056943094779     .03806916904848953
                    16982   -.034471840857198566   -.0695661931793848    -.2386851701754755   -.014215971105794867     .01864040164908777
                    17012   -.030505334747280267 -.012163209987963452    -.2803713222762772    .036356102868748984    -.02073580332225087
                    17043   -.010663197611191375   .10012475363679617     .6138383504301341  -.0030819755230080542   -.047539362335306395
                    17074    -.02452440092652386   .05808028761923638      .521230046145797   -.018011496503149267   -.030213544570864774
                    17104     .01901656009143597   .04372707149261758    -.0861453142692353    -.05571256004788088   .0017360698010594408
                    17135    .020437057433581138  .043170981583634756    .18454479985195846    -.04951115257453025    -.01407808752377145
                    17165     .01399500769638593 .0022092485728934215   -.18264655405171284    -.00827920887080089   -.009910676634185683
                    17196    .006115906854628414   .02888980577738069    .34737739820492763   .0019081101899439817  -.0019201917044298147
                    17225    .012990668883768625  -.10661869544060737    -.5277030336324345     -.0240622501875922    .027748191709931314
                    17255   -.010964581745386299 -.003148218622815594    -.4574809806102459     .02175667458336428   -.011295527828339449
                    17286   -.006542359573396203   .06318491701805779    .39937681769539446    .006836903850457876   .0005197651735329087
                    17316    .005371307522736346   .04630626969046031     .2978263998858029    .010815593131422595   -.011974184382104121
                    17347   -.021981543253431463   .02622886905143026    .45015590785903453     .00964872398393627  -.0004636804084227203
                    17377  -.0009468708583040397  .024999260060612486   -.10556040220179633   -.005216345125710514    -.02191967541179973
                    17408  .00014665046483598038 -.021215659763704795  -.010029176476919536     .02559821914147855   -.006869664423925871
                    17439     .03717401895627939   .13897481627087502    .14337909634829482    .021679814337936795    -.05508672450569002
                    17469     .06620914107063097   .12646630177027035     .2241770999604365   -.018313132186904314    -.04554665277154857
                    17500    -.00567596034408668  .010699400926707365    .23340552409156107     .07282888361788797    -.10083785983002627
                    17530     -.0574322832815171   .07110871246441276    .21336627922594442     .02543708959167501   -.009482323596968961
                    17561    .049277636708733835   -.1703807680372463   -.08654996872590295   -.010445952214747645     .03630035336038728
                    17591    -.04397105202612482 -.020417533309253992  -.058682047571174435     .03852672202686533      .0312987302531418
                    17621    -.07021234613949395  -.11167069862118478   -.30975155067820626   .0011562559886275914     .05628870558312554
                    17652    .014977526289855742   .06763281222150865     .1162708738109869   -.005368599423631132     .01713802993413449
                    17682   -.023850682900881798  -.06763626509936518  -.036573779073710594    -.01790523705949943     .03448793243961419
                    17713     -.0216037883787642  -.22360835591589712   -.13362782971439707    .026899279963932765      .0918494294176769
                    17743     .03288574246507414   .04793964322505168    .10249480738672481     .01699231314883489   -.049108782893319644
                    17774    -.02872260182126808  .013475433883809333    .08632104823815763    .006919576585663136     .03706562533308071
                    17805   -.005365540788792644   -.1467692815060055   -.24279875607273377     .06541346370665901    .016483441972782842
                    17835    .024715663852189096   -.3857939273842153    -.4828378218592362     .06355714967860682     .03715344982230484
                    17866   -.027273638483687093 -.022510741213680175  -.029886702096483107     .09647735774974356   -.002455061896756046
                    17896   -.026089120277655767    .0868088066994298    .28341777448439803     -.0629306946738789    -.10237242803888211
                    17927    .006836976103741996  -.05569592714999593   -.13292565618302737     .06720384065337162     .07096871683974276
                    17956    -.03602204128768939   -.0624370336089164     .1416401220692592    .037813037422039036     .05217611959254319
                    17986   -.005353366267338983   .06473041819611364    -.1380127046527298   -.014777751389460816   .0005976215527972728
                    18017   -.015240431107463814   .17603997237102656   .029633554946398324    -.06921071593063938     .00359271903041411
                    18047    .028915357318765045    .2848624171515663     .5188514197289154    -.09855817702784686    -.09740697367425599
                    18078 -.00021012019784896058 -.007888698736820772  -.046527242171121724   -.010133922017366449 -.00014683299534811595
                    18108    .015852454556496004   .06197687293170169    .07741921459723611   .0013670470454574535    .031071570536560983
                    18139    -.04280537100673845   .03661271208077691  -.017646585785140587   -.013639861834037703    .027221384363668957
                    18170    .007132570856523815   .06984252346999685    .15390322098648554    .027653866926790865   -.041680707880628734
                    18200     .06600407151950623  -.06735996286064377     .1019890282771319     .01655381326703087    .053215462527011384
                    18231    .022551417168261964   .06684136864799514   -.01840273395416842   -.021793479718617975   -.004849499678043573
                    18261   -.025368515827457194   .03009502036576156    .12865729752333022     .00597939834411447 -.00033689369900467836
                    18292     .01081035470306235  -.04797397323122907   .041397489961143445    .020297511853228926    .023064808226914157
                    18321    .019549330341170033 -.002142716311355584 -.0028689604157677824     .02441442443602735    .010398688994791877
                    18351    -.02178811221601447   .05703899770053844    .10113564274026064  -.0012868477955049057    .005632532115114254
                    18382  -.0026749459129589426   .01319598637195019    .05879052525623885    .004819294166790847    -.01620245139239078
                    18412     .03902535249228272  -.04979168018370136    .03822085498507351    .010549351499692272    .025550168542276097
                    18443    .010370519092942482  .048199239240456465    .13720399387160262    .015963940726483765     -.0130644660396627
                    18473     .04600416096976601  .011029841399184625   .030069513806459596    .010671871567129822     .02216896538987303
                    18504     .03233566489935693  .010829973861835443  -.028356607396660984   -.005122831126895943    .014175146734359035
                    18535   -.007586483195828511   .08142832961465962   .026493448956905082    .010438619405220145    .017403401061928586
                    18565      .0557251559220764 .0008337146951032286    .04948762600382413     .02104929782605215    .009795087844231075
                    18596    .037071931567361015  -.04567240868050797   -.12670453210107432  -.0005483262707309533     .07704273653289649
                    18626    -.03037690948485215  .016616223036462607   .058882451020972074     .03263759169249675   -.014307362493592234
                    18657    .007514795009862518  -.10733891669444211   -.16609907236377766     .01146289971624094    .052050339474803003
                    18686    .022041879279909124  -.04701471777306566   -.09050393565310812   -.017593657972898025     .03483216015125226
                    18716    .007716576704352149   .07077136479502687    .07524872131440774    .025152189473045837    -.00465371915554242
                    18747    .004377900687003302 -.002295134207331475    .05396326708824468     .01263858498210987    .018705215912480165
                    18777   -.003496827233725179  -.04897196489146304   -.02402107090457143   -.015240512733154715     .03189004500843755
                    18808    .002292519646038116  .013335449092528293    .03905907762502119    .016199090424298197     .03656149866142937
                    18838     .04901408260872691 -.028421368469604805   .000991883229465927   -.009210971326104208    .009350164403755716
                    18869     .07528509252174581  -.09884788674467222   -.08791482856471086    -.02372926597412328     .06463909979052998
                    18900    .009377264516429847 -.022793909595720856  -.012122650194557306    .023989252903277657   -.020900227112394806
                    18930   .0038781484704318303   .05302488060379295    .04154195377201581     .00945019362030132    .002287531574314279
                    18961     .04450613520536156  -.11057252838530636    -.1897650862340316   .0069532070773171695     .03046417906533587
                    18991     .03184150434579225  -.06396166402647532    -.1070319258388108    .017567505470008946    .045685403694561144
                    19022     -.1067921953932999   .09753530254671418    .11676460835167493   -.025638369286820173    -.09537787887008385
                    19052    -.04301509906045406  .058772026205247026     .3070455329549663    .006528308729473964   -.018348375763223873
                    19082     .05806527380510167 -.021861623490129975    .08074722235507548    .011918098396665876     .03138498163358063
                    19113    .056934072813931466  -.01607854122378937    .10256275067921926     .02639640924035069     .03161198554183506
                    19143     .03741159308567446  -.06991795306912295   .026027079838056875    .006689160666173352    .011738521018555909
                    19174    -.03342276756980009   .05359918581349932    .04523122943114229    .008740337592505386   -.013737544572640488
                    19204     .04256730726696051 -.023460627672218178    .12102905667043336    .004873106591381397    .024643735331878892
                    19235     .06263318146909266  .006989993709272336    .07857907960728933   -.014531398291101021     .04987303506518417
                    19266    -.04108747339008603   .07153832178946122    .09946779639858551   .0040499912603234045    -.03955561877371175
                    19296    .030238466137313593 -.024611873128540324  -.027944810897520315   -.001108629027275692    .008966890081646894
                    19327     .00407863447274448   .04724201290481994   .018902453366939666   -.014773973738321365   -.003449050645425434
                    19357   -.008735873582003517  .006460435179366955   .012802198706435623    .009644565156753163   -.007412890113319352
                    19388    .020126022877205604  .005814400212549169    .22987742168980613   .0016304011574133793     .01748200958594774
                    19417      .0912300551041374  -.07465854799733722   -.06333466635090926    -.03690983310362672     .06262495718247044
                    19447     .06873697946230511 -.017872400617454206   .030316877221863766   -.055373973512438945     .10112002424330425
                    19478   -.028360787912422445  .035210373750927254     .0924971944406468    .004835456878866509    -.05529234292741607
                    19508     .04506518078613986  .020511381033346824    .18761158012394916   -.018864834059442642    .035159744646813845
                    19539     .07531176730965757  -.06324212280779057   -.08631595469304748   -.013346064604485577     .04855476780192816
                    19569     .06409478774769009  -.03262351080297927   -.06165424065336029   -.028278786409560563     .09175053604930858
                    19600   -.041569636128964596  -.05763921166582483   -.07681599214716367    -.02701807956516991   -.008858732746112631
                    19631  -.0039003604138840298   .04246521644515159     .0625576463495023    .018534767940747973    .008309102211406669
                    19661     .02980941962626038   .07155093272715338    .25640017443298313   .0046376743111619795   -.031874893883960795
                    end
                    format %tdnn/dd/CCYY Date
                    Thank you.
                    Priya

                    Comment


                    • #11
                      Thank you so much @Shah sir. I understood now. it is great help for me.

                      Comment

                      Working...
                      X