Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • R squared with Fixed Effects. xtreg or Areg. Within (xtreg) or Adj (areg). Which to use?

    I know there have been similar questions with answers yielding different results.

    I am running a fixed effects model with LCR as the dependent variable.
    The first adjusted R squared states 0.687 for areg. The second is 0.239 for xtreg.
    Which should I use?

    Thanks
    Any contribution is greaty appreciated.

    Code:
    areg lcr lnta nim roaa assetg llrtgl depositg lev gdpg LCRpolicy if lcrlarge==1, absorb(id) rob
    > ust
    
    Linear regression, absorbing indicators         Number of obs     =        464
    Absorbed variable: id                           No. of categories =        116
                                                    F(   9,    339)   =       5.43
                                                    Prob > F          =     0.0000
                                                    R-squared         =     0.7710
                                                    Adj R-squared     =     0.6872
                                                    Root MSE          =     0.3797
    
    ------------------------------------------------------------------------------
                 |               Robust
             lcr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
            lnta |  -.7698172    .282831    -2.72   0.007    -1.326142   -.2134925
             nim |  -24.20668   12.03465    -2.01   0.045    -47.87867   -.5346989
            roaa |   5.610156   8.106008     0.69   0.489    -10.33425    21.55456
          assetg |  -.0094219   .2088364    -0.05   0.964    -.4202003    .4013565
          llrtgl |  -.0354481   1.150923    -0.03   0.975    -2.299297    2.228401
        depositg |  -.3610365   .1272425    -2.84   0.005    -.6113207   -.1107523
             lev |  -.0903418   1.275511    -0.07   0.944    -2.599255    2.418571
            gdpg |   1.219889   1.909962     0.64   0.523    -2.536982    4.976759
       LCRpolicy |   .7254302   .1662699     4.36   0.000     .3983796    1.052481
           _cons |   14.79609   4.933593     3.00   0.003     5.091784     24.5004
    ------------------------------------------------------------------------------
    Code:
    xtreg lcr lnta nim roaa assetg llrtgl depositg lev gdpg LCRpolicy if lcrlarge==1, fe robust
    
    Fixed-effects (within) regression               Number of obs     =        464
    Group variable: id                              Number of groups  =        116
    
    R-sq:                                           Obs per group:
         within  = 0.2399                                         min =          4
         between = 0.0580                                         avg =        4.0
         overall = 0.0642                                         max =          4
    
                                                    F(9,115)          =       6.41
    corr(u_i, Xb)  = -0.7731                        Prob > F          =     0.0000
    
                                       (Std. Err. adjusted for 116 clusters in id)
    ------------------------------------------------------------------------------
                 |               Robust
             lcr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
            lnta |  -.7698172   .3059003    -2.52   0.013    -1.375747   -.1638876
             nim |  -24.20668   11.80274    -2.05   0.043    -47.58563   -.8277353
            roaa |   5.610156    7.56064     0.74   0.460    -9.366018    20.58633
          assetg |  -.0094219   .1908474    -0.05   0.961     -.387454    .3686101
          llrtgl |  -.0354481   1.087143    -0.03   0.974    -2.188868    2.117972
        depositg |  -.3610365   .1177785    -3.07   0.003    -.5943331   -.1277399
             lev |  -.0903418   1.000216    -0.09   0.928    -2.071578    1.890894
            gdpg |   1.219889   1.263876     0.97   0.336    -1.283607    3.723385
       LCRpolicy |   .7254302   .1858142     3.90   0.000     .3573681    1.093492
           _cons |   14.79609   5.398516     2.74   0.007     4.102672    25.48952
    -------------+----------------------------------------------------------------
         sigma_u |  .90287735
         sigma_e |   .3797107
             rho |   .8497133   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------

  • #2
    I think you need to answer first, what do you want to use the R2 for.
    The easiest approach would be to report the Standard R2 and the within R2. with a foot note on the adj r2.

    Comment


    • #3
      When you say standard R2, do you mean the areg R2 or the overall xtreg R2?

      Comment


      • #4
        Standard R2 (not adjusted) you get from a reg. It corresponds to R2=1-SSR/SST
        Then within R2 follows the same principle, but SSR and SST are estimated after partialling out the fixed effects.

        Comment


        • #5
          so sorry, you said: 'you get from a reg' - is that 'a reg i.e. -reg-' or '-areg-' Thanks

          Comment


          • #6
            I shall use areg?

            Comment


            • #7
              Victor:
              whereas -areg- and -regress- both give back the same -Rsq- and -adj-Rsq-, for -xtreg- the interesting -Rsq- is the -within-one.
              You can access -adj_Rsq- after -xtreg,fe- typing:
              Code:
              di e(r2_a)
              .

              However, I don't think it has the same meaning as in -regress- or -areg-.
              Kind regards,
              Carlo
              (Stata 19.0)

              Comment

              Working...
              X