Hello,
I am following up on my previous post on multiple response variables (available here: ) with a different question.
Here is a scratch of the dataset I am using:
The following command gives me the aggregated number of times a bad reason is given in the data
/* Number of times a Bad Reason is Given - regardless of multiple indicators */
.
. tabstat Bad_*, s(sum) c(s)
variable | sum
-------------+----------
Bad_Reduce~o | 77
Bad_Agains~l | 24
Bad_Physic~n | 95
Bad_Handic~y | 57
Bad_Abusive | 18
Bad_Health~s | 154
Bad_Mental~h | 22
Bad_NonSpe~y | 128
Bad_Patria~r | 45
Bad_Cultur~e | 15
------------------------
[/CODE]
Now, I want to find out how this aggregated variable differs by my predictors, like gender, race, etc, and then produce a chi-square to test the differences.
is this feasible on aggregated variable such as the version I have?
Thanks - cY
I am following up on my previous post on multiple response variables (available here: ) with a different question.
Here is a scratch of the dataset I am using:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int id byte(Bad_ReduceSexualityLibido Bad_AgainstGodWill Bad_PhysicalPain Bad_HandicapDisability Bad_Abusive Bad_HealthInfections Bad_MentalHealth Bad_NonSpecificGenerally Bad_PatriarchyGender Bad_CulturalPractice) 1 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 3 0 0 1 0 0 1 0 0 0 0 4 0 1 1 0 0 0 0 1 1 0 5 0 0 0 0 0 0 0 1 0 0 6 0 0 0 0 0 1 0 0 0 0 7 1 0 0 0 0 1 0 0 0 0 8 0 0 0 0 0 0 0 1 0 0 9 0 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 1 0 0 end label values Bad_ReduceSexualityLibido labels29 label def labels29 0 "No", modify label def labels29 1 "Yes", modify label values Bad_AgainstGodWill labels30 label def labels30 0 "No", modify label def labels30 1 "Yes", modify label values Bad_PhysicalPain labels31 label def labels31 0 "No", modify label def labels31 1 "Yes", modify label values Bad_HandicapDisability labels32 label def labels32 0 "No", modify label values Bad_Abusive labels33 label def labels33 0 "No", modify label values Bad_HealthInfections labels34 label def labels34 0 "No", modify label def labels34 1 "Yes", modify label values Bad_MentalHealth labels35 label def labels35 0 "No", modify label values Bad_NonSpecificGenerally labels36 label def labels36 0 "No", modify label def labels36 1 "Yes", modify label values Bad_PatriarchyGender labels37 label values Bad_CulturalPractice labels37 label def labels37 0 "No", modify label def labels37 1 "Yes", modify
The following command gives me the aggregated number of times a bad reason is given in the data
/* Number of times a Bad Reason is Given - regardless of multiple indicators */
.
. tabstat Bad_*, s(sum) c(s)
variable | sum
-------------+----------
Bad_Reduce~o | 77
Bad_Agains~l | 24
Bad_Physic~n | 95
Bad_Handic~y | 57
Bad_Abusive | 18
Bad_Health~s | 154
Bad_Mental~h | 22
Bad_NonSpe~y | 128
Bad_Patria~r | 45
Bad_Cultur~e | 15
------------------------
[/CODE]
Now, I want to find out how this aggregated variable differs by my predictors, like gender, race, etc, and then produce a chi-square to test the differences.
is this feasible on aggregated variable such as the version I have?
Thanks - cY
Comment