Hello, does anyone know a Stata comman to run a Weighted Least Squares estimation in a panel model with both time and individuals fixed effects?
-
Login or Register
- Log in with
sysuse auto, clear * WLS by hand reg price length i.foreign //OLS predict r, r //residual gen lrsq = ln(r^2) //ln(residual^2) reg lrsq length //auxiliary regression: assume the variance varies by length predict lrsqhat gen h = exp(lrsqhat) //estimate of the variance reg price length i.foreign [aw=1/h] //WLS * WLS with -hetregress- hetregress price length i.foreign, het(length) twostep
. reg price length i.foreign [aw=1/h] //WLS (sum of wgt is .00007419812346) Source | SS df MS Number of obs = 74 -------------+---------------------------------- F(2, 71) = 17.20 Model | 94395245.9 2 47197623 Prob > F = 0.0000 Residual | 194866917 71 2744604.46 R-squared = 0.3263 -------------+---------------------------------- Adj R-squared = 0.3074 Total | 289262163 73 3962495.38 Root MSE = 1656.7 ------------------------------------------------------------------------------ price | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- length | 66.70549 11.67666 5.71 0.000 43.42289 89.98809 | foreign | Foreign | 1580.511 428.8698 3.69 0.000 725.3689 2435.653 _cons | -6934.138 2085.765 -3.32 0.001 -11093.03 -2775.241 ------------------------------------------------------------------------------ . . * WLS with -hetregress- . hetregress price length i.foreign, het(length) twostep Heteroskedastic linear regression Number of obs = 74 Two-step GLS estimation Wald chi2(2) = 34.39 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ price | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- price | length | 66.70549 11.67666 5.71 0.000 43.81966 89.59132 | foreign | Foreign | 1580.511 428.8698 3.69 0.000 739.9416 2421.08 _cons | -6934.137 2085.765 -3.32 0.001 -11022.16 -2846.113 -------------+---------------------------------------------------------------- lnsigma2 | length | .0448232 .0116768 3.84 0.000 .0219371 .0677094 _cons | 7.122623 2.209595 3.22 0.001 2.791897 11.45335 ------------------------------------------------------------------------------ Wald test of lnsigma2=0: chi2(1) = 14.74 Prob > chi2 = 0.0001
reg price length i.foreign, vce(robust)
* Identical results xtreg y x, fe vce(cluster panelid) xtreg y x, fe vce(robust)
Comment