I have an industry level panel data with 9 firms and 64 time variables (2002-2017 quarterly).
The problem with my dataset is that there are quite a lot of missing values in both dependent (return on assets, earnings per share) and independent variables (long term debt, short term debt, total equity, firm size).
co is the company name
t is the time
roa - return on asset
eps - earnings per share
ltd - long term debt
std - short term debt
te - total equity
. dataex co date roa eps ltd std te fsize
------------------ copy up to and including the previous line ------------------
I tried to run xtgcause but got the following result
. xtgcause roa ltd
Panel must be strongly balanced and without gaps (no missing values allowed in roa and ltd).
r(459);
so i proceed with filling up missing values.
I know there are two methods of filling up missing values in panel data (imputation, interpolation)
(If I understand correctly, multiple imputation does not allow dependent variables to have missing values)
so I tried ipolate command to fill the missing values of one dependent variable and independent variable
However, when I proceed to the panel granger causality test of the two interpolated variables (newr, newl),, it shows no result and blank result.
xtgcause newr newl
Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 1
W-bar = .
Z-bar = . (p-value = .)
Z-bar tilde = . (p-value = .)
--------------------------------------------------------------
H0: newl does not Granger-cause newr.
H1: newl does Granger-cause newr for at least one panelvar (co).
I have the following question:
Does Stata recognize that my data is quarterly data?
How do I make my data strongly balanced?
What should I do so that there is p-value generated in xtgcause?
Between mi imputation and ipolate, which one is best to be used in my dataset to fill up the missing values?
My Stata version is 14.1.
The problem with my dataset is that there are quite a lot of missing values in both dependent (return on assets, earnings per share) and independent variables (long term debt, short term debt, total equity, firm size).
co is the company name
t is the time
roa - return on asset
eps - earnings per share
ltd - long term debt
std - short term debt
te - total equity
. dataex co date roa eps ltd std te fsize
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte co int date double(roa eps ltd std te fsize) 1 168 -1.59 -.3 .150732123 .480732368 -.150451912 6.864904853 1 169 -1.59 -.3 .150732123 .480732368 -.150451912 6.864904853 1 170 -2.33 -.33 .150210285 .458963326 -.194214293 6.872869911 1 171 -2.33 -.33 .150210285 .458963326 -.194214293 6.872869911 1 172 -2.33 -.33 .150210285 .458963326 -.194214293 6.872869911 1 173 -2.33 -.33 .150210285 .458963326 -.194214293 6.872869911 1 174 -4.23 -.44 .190369006 .520745457 -.705290641 6.793188379 1 175 -4.23 -.44 .190369006 .520745457 -.705290641 6.793188379 1 176 -4.23 -.44 .190369006 .520745457 -.705290641 6.793188379 1 177 -4.23 -.44 .190369006 .520745457 -.705290641 6.793188379 1 178 19.49 .36 .217024206 .380363482 -.674301913 6.757220909 1 179 19.49 .36 .217024206 .380363482 -.674301913 6.757220909 1 180 19.49 .36 .217024206 .380363482 -.674301913 6.757220909 1 181 19.49 .36 .217024206 .380363482 -.674301913 6.757220909 1 182 3.97 -.08 .001139766 .622463703 -.740918166 6.739064501 1 183 3.97 -.08 .001139766 .622463703 -.740918166 6.739064501 1 184 3.97 -.08 .001139766 .622463703 -.740918166 6.739064501 1 185 3.97 -.08 .001139766 .622463703 -.740918166 6.739064501 1 186 87.44 1.87 0 .330706019 .08328106 6.724594918 1 187 87.44 1.87 0 .330706019 .08328106 6.724594918 1 188 87.44 1.87 0 .330706019 .08328106 6.724594918 1 189 87.44 1.87 0 .330706019 .08328106 6.724594918 1 190 3.54 .01 0 .311766926 .100444915 6.695879189 1 191 3.54 .01 0 .311766926 .100444915 6.695879189 1 192 3.54 .01 0 .311766926 .100444915 6.695879189 1 193 3.54 .01 0 .311766926 .100444915 6.695879189 1 194 -4.62 -.12 0 .339366645 .011952315 6.659040076 1 195 -4.62 -.12 0 .339366645 .011952315 6.659040076 1 196 -4.62 -.12 0 .339366645 .011952315 6.659040076 1 197 -4.62 -.12 0 .339366645 .011952315 6.659040076 1 198 44.19 .82 0 0 .443169288 6.631867709 1 199 44.19 .82 0 0 .443169288 6.631867709 1 200 44.19 .82 0 0 .443169288 6.631867709 1 201 44.19 .82 0 0 .443169288 6.631867709 1 202 6.19 .11 0 0 .469977361 6.637428884 1 203 6.19 .11 0 0 .469977361 6.637428884 1 204 6.19 .11 0 0 .469977361 6.637428884 1 205 6.19 .11 0 0 .469977361 6.637428884 1 206 2.15 .04 0 0 .513438257 6.638185144 1 207 2.15 .04 0 0 .513438257 6.638185144 1 208 2.15 .04 0 0 .513438257 6.638185144 1 209 2.15 .04 0 0 .513438257 6.638185144 1 210 15.81 .31 0 0 .592651551 6.686776543 1 211 15.81 .31 0 0 .592651551 6.686776543 1 212 15.81 .31 0 0 .592651551 6.686776543 1 213 15.81 .31 0 0 .592651551 6.686776543 1 214 4.38 .089 0 0 .64532583 6.683586418 1 215 4.38 .089 0 0 .64532583 6.683586418 1 216 4.38 .089 0 0 .64532583 6.683586418 1 217 4.38 .089 0 0 .64532583 6.683586418 1 218 -5.65 -.111 0 0 .615601448 6.64943933 1 219 -5.65 -.111 0 0 .615601448 6.64943933 1 220 -5.65 -.111 0 0 .615601448 6.64943933 1 221 -5.65 -.111 0 0 .615601448 6.64943933 1 222 . . . . . . 1 223 . . . . . . 1 224 . . . . . . 1 225 . . . . . . 1 226 . .008 0 0 .813225686 6.950537418 1 227 . .008 0 0 .813225686 6.950537418 1 228 . .008 0 0 .813225686 6.950537418 1 229 . .008 0 0 .813225686 6.950537418 1 230 . .008 0 0 .813225686 6.950537418 1 231 . .008 0 0 .813225686 6.950537418 2 168 -1.84 -.93 0 .344851369 .499351248 5.666488028 2 169 -1.84 -.93 0 .344851369 .499351248 5.666488028 2 170 -1.84 -.93 0 .344851369 .499351248 5.666488028 2 171 -1.84 -.93 0 .344851369 .499351248 5.666488028 2 172 -6.5 -1.68 0 .350226662 .405998069 5.659770777 2 173 -6.5 -1.68 0 .350226662 .405998069 5.659770777 2 174 -6.5 -1.68 0 .350226662 .405998069 5.659770777 2 175 -6.5 -1.68 0 .350226662 .405998069 5.659770777 2 176 5.87 .62 0 .393167866 .568534776 5.551550021 2 177 5.87 .62 0 .393167866 .568534776 5.551550021 2 178 5.87 .62 0 .393167866 .568534776 5.551550021 2 179 5.87 .62 0 .393167866 .568534776 5.551550021 2 180 1.34 .07 0 .32118577 .614080427 5.526667459 2 181 1.34 .07 0 .32118577 .614080427 5.526667459 2 182 1.34 .07 0 .32118577 .614080427 5.526667459 2 183 1.34 .07 0 .32118577 .614080427 5.526667459 2 184 -6.59 -1.222 0 .329335334 .582746206 5.550547534 2 185 -6.59 -1.222 0 .329335334 .582746206 5.550547534 2 186 -6.59 -1.222 0 .329335334 .582746206 5.550547534 2 187 -6.59 -1.222 0 .329335334 .582746206 5.550547534 2 188 118.27 36.613 0 0 .865657679 6.133425849 2 189 118.27 36.613 0 0 .865657679 6.133425849 2 190 118.27 36.613 0 0 .865657679 6.133425849 2 191 118.27 36.613 0 0 .865657679 6.133425849 2 192 35.35 15.561 0 .046796937 .752900006 6.028752578 2 193 35.35 15.561 0 .046796937 .752900006 6.028752578 2 194 35.35 15.561 0 .046796937 .752900006 6.028752578 2 195 35.35 15.561 0 .046796937 .752900006 6.028752578 2 196 27.52 7.932 0 0 .953999731 5.717179356 2 197 27.52 7.932 0 0 .953999731 5.717179356 2 198 27.52 7.932 0 0 .953999731 5.717179356 2 199 27.52 7.932 0 0 .953999731 5.717179356 2 200 6.66 1.05 0 0 .94722756 5.537186705 2 201 6.66 1.05 0 0 .94722756 5.537186705 2 202 6.66 1.05 0 0 .94722756 5.537186705 2 203 6.66 1.05 0 0 .94722756 5.537186705 end format %tq date label values co co label def co 1 "AYALALAND LOG", modify label def co 2 "CONCRETE AGGREGATES", modify
I tried to run xtgcause but got the following result
. xtgcause roa ltd
Panel must be strongly balanced and without gaps (no missing values allowed in roa and ltd).
r(459);
so i proceed with filling up missing values.
I know there are two methods of filling up missing values in panel data (imputation, interpolation)
(If I understand correctly, multiple imputation does not allow dependent variables to have missing values)
so I tried ipolate command to fill the missing values of one dependent variable and independent variable
However, when I proceed to the panel granger causality test of the two interpolated variables (newr, newl),, it shows no result and blank result.
xtgcause newr newl
Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 1
W-bar = .
Z-bar = . (p-value = .)
Z-bar tilde = . (p-value = .)
--------------------------------------------------------------
H0: newl does not Granger-cause newr.
H1: newl does Granger-cause newr for at least one panelvar (co).
I have the following question:
Does Stata recognize that my data is quarterly data?
How do I make my data strongly balanced?
What should I do so that there is p-value generated in xtgcause?
Between mi imputation and ipolate, which one is best to be used in my dataset to fill up the missing values?
My Stata version is 14.1.
Comment