Hi Stata users,
Please I'd help for this issue. I run a xtologit model where my dependent variable is exportation ranking from 1 to 3 (where 1 is the best option). The results of the odds ratio are:
The odds ratio if the CEO is woman is .402 (p=0.042), it means that if the CEO of the company is a woman (CEO_WOMAN=1), the odds of high export versus the combined 2-3 categories are (1/0,40=2,5) 2.5 smaller, given that all of the other variables in the model are held constant.
However, when I run the marginal effect, for the otcome=1, we can say that if the CEO of the company is a woman, the probability of belonging to the first group in the exportation ranking is 7.6% higher. I notice that these results are contradictories. Please, could someone help me?
Thanks!
Please I'd help for this issue. I run a xtologit model where my dependent variable is exportation ranking from 1 to 3 (where 1 is the best option). The results of the odds ratio are:
HTML Code:
. . xtologit RANKING_EXPORT i.CEO_WOMEN LOG_SIZE ROA , nolog or Random-effects ordered logistic regression Number of obs = 2,322 Group variable: IDENT Number of groups = 271 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 8.6 max = 12 Integration method: mvaghermite Integration pts. = 12 Wald chi2(3) = 218.37 Log likelihood = -1226.6616 Prob > chi2 = 0.0000 -------------------------------------------------------------------------------- RANKING_EXPORT | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- | 1.CEO_WOMEN | .4024663 .1804177 -2.03 0.042 .1671678 .9689613 LOG_SIZE | .0083885 .0027659 -14.50 0.000 .0043957 .0160082 ROA | .997986 .0075322 -0.27 0.789 .9833318 1.012859 ---------------+---------------------------------------------------------------- /cut1 | -34.37714 2.235956 -15.37 0.000 -38.75953 -29.99475 /cut2 | -28.91801 2.127807 -13.59 0.000 -33.08844 -24.74759 ---------------+---------------------------------------------------------------- /sigma2_u | 18.97392 2.703147 14.35124 25.08561 -------------------------------------------------------------------------------- LR test vs. ologit model: chibar2(01) = 1772.14 Prob >= chibar2 = 0.0000
However, when I run the marginal effect, for the otcome=1, we can say that if the CEO of the company is a woman, the probability of belonging to the first group in the exportation ranking is 7.6% higher. I notice that these results are contradictories. Please, could someone help me?
Thanks!
HTML Code:
. . margins, dydx(*) predict(pu0 outcome(1)) Average marginal effects Number of obs = 2,322 Model VCE : OIM Expression : Predicted mean (1.RANKING_EXPORT), assuming u_i=0, predict(pu0 outcome(1)) dy/dx w.r.t. : 1.CEO_WOMEN LOG_SIZE ROA ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.CEO_WOMEN | .0766569 .0399485 1.92 0.055 -.0016407 .1549545 LOG_SIZE | .3866462 .0248591 15.55 0.000 .3379232 .4353691 ROA | .000163 .0006111 0.27 0.790 -.0010347 .0013608 ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level. . . margins, dydx(*) predict(pu0 outcome(2)) Average marginal effects Number of obs = 2,322 Model VCE : OIM Expression : Predicted mean (2.RANKING_EXPORT), assuming u_i=0, predict(pu0 outcome(2)) dy/dx w.r.t. : 1.CEO_WOMEN LOG_SIZE ROA ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.CEO_WOMEN | -.0070803 .012385 -0.57 0.568 -.0313544 .0171938 LOG_SIZE | .0028512 .0474311 0.06 0.952 -.0901121 .0958146 ROA | 1.20e-06 .0000202 0.06 0.952 -.0000384 .0000408 ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level. . . margins, dydx(*) predict(pu0 outcome(3)) Average marginal effects Number of obs = 2,322 Model VCE : OIM Expression : Predicted mean (3.RANKING_EXPORT), assuming u_i=0, predict(pu0 outcome(3)) dy/dx w.r.t. : 1.CEO_WOMEN LOG_SIZE ROA ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.CEO_WOMEN | -.0695766 .0319731 -2.18 0.030 -.1322426 -.0069106 LOG_SIZE | -.3894974 .0334593 -11.64 0.000 -.4550764 -.3239183 ROA | -.0001642 .0006144 -0.27 0.789 -.0013684 .0010399 ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level.
Comment