Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • ordered probit IV using cmp

    Dear all,
    I am using the cmp command for instrumental variable in my ordered probit model. I got this result but I don't know how to interpret it. I don't know how to tell if my independent variable is endogenous from this result, which is 1st or 2nd stage, what tells me if the instrument is weak, how do I get the f statistics? many thanks.

    isced1997_r
    =independent variable,
    sl_hs045d2= dependent variable, dn033_1=instrument


    This is the command and the result.

    cmp (isced1997_r = sl_hs045d2) (sl_hs045d2 = dn033_1), ind($cmp_oprobit $cmp_probit)nolr

    Fitting individual models as starting point for full model fit.
    Note: For programming reasons, these initial estimates may deviate from your specification.
    For exact fits of each equation alone, run cmp separately on each.

    Iteration 0: log likelihood = -11462.671
    Iteration 1: log likelihood = -11454.183
    Iteration 2: log likelihood = -11454.183

    Ordered probit regression Number of obs = 7,794
    LR chi2(1) = 16.98
    Prob > chi2 = 0.0000
    Log likelihood = -11454.183 Pseudo R2 = 0.0007

    ------------------------------------------------------------------------------
    _cmp_y1 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    sl_hs045d2 | -.1862259 .0452082 -4.12 0.000 -.2748323 -.0976195
    -------------+----------------------------------------------------------------
    /cut1 | -1.078698 .0179396 -1.113859 -1.043537
    /cut2 | -.4399117 .015115 -.4695365 -.4102868
    /cut3 | .4644665 .0151765 .4347211 .494212
    /cut4 | .5817112 .0155064 .5513192 .6121031
    /cut5 | 2.601518 .0577342 2.488361 2.714675
    ------------------------------------------------------------------------------

    Iteration 0: log likelihood = -536.06062
    Iteration 1: log likelihood = -536.03597
    Iteration 2: log likelihood = -536.03597

    Probit regression Number of obs = 2,010
    LR chi2(1) = 0.05
    Prob > chi2 = 0.8243
    Log likelihood = -536.03597 Pseudo R2 = 0.0000

    ------------------------------------------------------------------------------
    sl_hs045d2 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    dn033_1 | -.0081992 .0369023 -0.22 0.824 -.0805264 .064128
    _cons | -1.410154 .1346613 -10.47 0.000 -1.674086 -1.146223
    ------------------------------------------------------------------------------

    Fitting full model.

    Iteration 0: log likelihood = -11990.235
    Iteration 1: log likelihood = -11990.216
    Iteration 2: log likelihood = -11990.216

    Mixed-process regression Number of obs = 7,794
    Wald chi2(2) = 11.69
    Log likelihood = -11990.216 Prob > chi2 = 0.0029

    ------------------------------------------------------------------------------
    | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    isced1997_r |
    sl_hs045d2 | -.1840948 .0539897 -3.41 0.001 -.2899128 -.0782769
    -------------+----------------------------------------------------------------
    sl_hs045d2 |
    dn033_1 | -.0082522 .0369107 -0.22 0.823 -.0805959 .0640915
    _cons | -1.409138 .1354056 -10.41 0.000 -1.674528 -1.143748
    -------------+----------------------------------------------------------------
    /cut_1_1 | -1.078535 .0180819 -59.65 0.000 -1.113975 -1.043096
    /cut_1_2 | -.4397479 .0152849 -28.77 0.000 -.4697058 -.4097899
    /cut_1_3 | .4646277 .0153394 30.29 0.000 .4345631 .4946923
    /cut_1_4 | .5818718 .0156645 37.15 0.000 .5511699 .6125736
    /cut_1_5 | 2.601698 .0577884 45.02 0.000 2.488435 2.714962
    /atanhrho_12 | -.0041086 .0569038 -0.07 0.942 -.115638 .1074208
    -------------+----------------------------------------------------------------
    rho_12 | -.0041086 .0569028 -.1151253 .1070095
    ------------------------------------------------------------------------------


  • #2
    You didn't get a quick answer. cmp is user written although widely used. You may need to contact the author to answer questions.

    Comment


    • #3
      Many thanks.

      Comment

      Working...
      X