I intend to measure the TFP of manufacturing firms for 23 firms through Cobb - Douglas Production Function Approach using Prodest code in Stata for the period 2015-2017.
I am using Levinsohn and Petrin (2003) approach with the attached Stata dataset for the same. However, I got negative coefficients of logL and logK in case of Levinsohn and Petrin (2003) approach. Results have been attached in the form of the image below. These individual TFP Values as dependent variables are regressed with infrastructure stocks as an independent variable.
Stata Code:
prodest lnGVA, method (lp) free(lnL) proxy(lnInput) state(lnK) poly(3) valueadded reps(250)
predict TFP
Can anyone help to overcome this issue in the result? Please respond.
I am using Levinsohn and Petrin (2003) approach with the attached Stata dataset for the same. However, I got negative coefficients of logL and logK in case of Levinsohn and Petrin (2003) approach. Results have been attached in the form of the image below. These individual TFP Values as dependent variables are regressed with infrastructure stocks as an independent variable.
Stata Code:
prodest lnGVA, method (lp) free(lnL) proxy(lnInput) state(lnK) poly(3) valueadded reps(250)
predict TFP
Can anyone help to overcome this issue in the result? Please respond.
Famid | year | lnGVA | lnK | lnL | lnInput |
1 | 2015 | 13.34451139 | 14.43711069 | 13.82499642 | 14.94789177 |
2 | 2015 | 10.90103056 | 11.39432509 | 12.00363817 | 12.56028455 |
3 | 2015 | 10.52884158 | 10.90823019 | 11.74051512 | 12.56156862 |
4 | 2015 | 11.71408167 | 12.96707595 | 11.86919333 | 13.19120632 |
5 | 2015 | 10.78025708 | 10.57660072 | 11.29931136 | 12.61370021 |
6 | 2015 | 11.30195799 | 10.79404052 | 10.71557266 | 12.07061138 |
7 | 2015 | 13.89161883 | 14.69274188 | 13.91372923 | 15.59004602 |
8 | 2015 | 12.68505841 | 13.08795162 | 13.27239071 | 14.34357928 |
9 | 2015 | 12.17481436 | 12.49800879 | 11.90358822 | 13.0876142 |
10 | 2015 | 10.37213186 | 10.36546633 | 10.85971028 | 11.51539809 |
11 | 2015 | 11.89178185 | 12.93752458 | 11.87475212 | 13.15976277 |
12 | 2015 | 12.88529455 | 13.74124074 | 13.52565546 | 14.57748312 |
13 | 2015 | 11.26551282 | 11.99049128 | 12.59243988 | 13.35132999 |
14 | 2015 | 11.91772596 | 13.18896836 | 12.4565356 | 13.65617625 |
15 | 2015 | 14.08798489 | 14.43171365 | 14.08198176 | 15.39174269 |
16 | 2015 | 11.84720763 | 14.04701543 | 12.27763023 | 13.27226267 |
17 | 2015 | 11.84987474 | 12.32818954 | 13.05611887 | 13.71366131 |
18 | 2015 | 12.2899301 | 12.94906791 | 12.83675914 | 13.8142172 |
19 | 2015 | 13.31159488 | 14.0107976 | 14.37021545 | 14.99198913 |
20 | 2015 | 7.930242796 | 7.485056583 | 10.17564981 | 8.622648785 |
21 | 2015 | 12.58255248 | 13.30226199 | 13.42014082 | 14.52482222 |
22 | 2015 | 12.45019737 | 12.54385883 | 12.59546596 | 13.57663852 |
23 | 2015 | 11.82869258 | 13.06866314 | 13.13062515 | 14.08698579 |
1 | 2016 | 13.48373632 | 14.55212104 | 13.81087483 | 14.87352281 |
2 | 2016 | 11.09011635 | 12.09660422 | 12.06294103 | 12.5021024 |
3 | 2016 | 10.43491923 | 10.92367085 | 11.54507315 | 12.3586785 |
4 | 2016 | 11.26804467 | 13.0838402 | 11.83438558 | 13.05207522 |
5 | 2016 | 10.7530443 | 10.4765827 | 11.23227197 | 12.73695465 |
6 | 2016 | 11.41296781 | 10.8661762 | 10.80685514 | 12.14263568 |
7 | 2016 | 13.9810047 | 14.90279048 | 13.99064468 | 15.47850878 |
8 | 2016 | 12.75290698 | 13.25330751 | 13.23466654 | 14.43921191 |
9 | 2016 | 12.17262238 | 12.62311498 | 11.81393335 | 12.95478697 |
10 | 2016 | 10.49895051 | 10.55531489 | 10.86526777 | 11.58579992 |
11 | 2016 | 11.52578885 | 12.93922703 | 11.86191193 | 13.20034564 |
12 | 2016 | 12.99481134 | 13.78688988 | 13.55250289 | 14.51278126 |
13 | 2016 | 11.53622211 | 12.27852734 | 12.51736626 | 13.27750928 |
14 | 2016 | 12.20480924 | 13.55141515 | 12.49875718 | 13.69012924 |
15 | 2016 | 14.14469829 | 14.47629798 | 14.13122964 | 15.45322844 |
16 | 2016 | 11.80136403 | 14.22621284 | 12.25082132 | 13.35906515 |
17 | 2016 | 11.91459215 | 12.41077943 | 13.10543896 | 13.69703396 |
18 | 2016 | 12.39233098 | 13.06787942 | 12.88085472 | 13.9162249 |
19 | 2016 | 13.50721806 | 14.10146753 | 14.47325385 | 14.97086086 |
20 | 2016 | 7.590132471 | 7.815032882 | 10.07225939 | 8.626449627 |
21 | 2016 | 12.79879814 | 13.47297179 | 13.50166245 | 14.52501448 |
22 | 2016 | 12.73090918 | 12.64631381 | 12.64053977 | 13.87087559 |
23 | 2016 | 12.05060545 | 13.1477183 | 13.11664506 | 14.11136877 |
1 | 2017 | 13.37820655 | 14.57031481 | 13.87654921 | 14.99791944 |
2 | 2017 | 11.31482949 | 11.94872061 | 12.1067936 | 12.48835749 |
3 | 2017 | 10.48552974 | 11.50844226 | 11.50258216 | 12.33606399 |
4 | 2017 | 11.45326146 | 13.4451234 | 11.89512877 | 13.13305958 |
5 | 2017 | 10.53909949 | 10.41244812 | 11.2286642 | 12.71520385 |
6 | 2017 | 11.32904661 | 10.91523748 | 10.70495088 | 11.98065828 |
7 | 2017 | 13.91086343 | 15.06872287 | 14.03587425 | 15.54622029 |
8 | 2017 | 12.98490547 | 13.39216318 | 13.3848061 | 14.65935721 |
9 | 2017 | 12.08523011 | 12.39343758 | 11.86197541 | 12.95263912 |
10 | 2017 | 10.6732993 | 10.92220152 | 10.98576719 | 11.73012375 |
11 | 2017 | 11.90939933 | 13.25324863 | 11.88186489 | 13.18303098 |
12 | 2017 | 13.19309476 | 13.82810032 | 13.62542212 | 14.61800501 |
13 | 2017 | 11.72306923 | 12.43306157 | 12.42895616 | 13.41005668 |
14 | 2017 | 12.21973581 | 13.62180352 | 12.54387614 | 13.72163599 |
15 | 2017 | 14.10537468 | 14.43870418 | 14.12643932 | 15.34049703 |
16 | 2017 | 12.04438547 | 14.43877548 | 12.31398041 | 13.40533761 |
17 | 2017 | 11.98871848 | 12.33912744 | 13.18484604 | 13.69294326 |
18 | 2017 | 12.53221462 | 13.23962174 | 12.93065551 | 14.01079714 |
19 | 2017 | 13.5782688 | 14.25990109 | 14.51053547 | 15.04941816 |
20 | 2017 | 7.673050689 | 7.846913183 | 10.08397409 | 8.60560012 |
21 | 2017 | 13.23123952 | 13.50385468 | 13.57157867 | 14.59337051 |
22 | 2017 | 12.61675213 | 12.68825504 | 12.74948936 | 13.66224058 |
23 | 2017 | 12.22915794 | 13.35048112 | 13.11830917 | 14.14173054 |
Comment