Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Fixed effect and reverse causality

    Hi Statalist,

    i am analyzing a dataset of performance for Footballplayers and How a transfer affects Their performance.

    To do This i have gathered an overall performance-target 83 players spread on 6 seasons.
    Besides that i have a dummy variable which is 1 if the player is sold at the end of the season.

    my data would look like This:

    season - player - performance - sold
    11/12 - Ronaldo - 7,2 - 0
    12/13. - Ronaldo - 7,1 - 0
    13/14. - Ronaldo - 8,1 - 1 (sold in summer 2014 AFTER the season)
    14/15. - Ronaldo - 6,9 - 0
    15/16. - Ronaldo - 7,0 - 0
    16/17. - Ronaldo - 7,2 - 0

    So i want to measure How performance develops leading up to a transfer and afterwards.

    to do This i have made a fixed effect model with performance as My Y
    and sold as My X. My model now shows me that when sold=1 the performance for that season is higher than normal which is also the effect i would expect.

    but now i am Unsure if My coefficients would biased by reverse causality and How i should address This issue?

    /Martin

  • #2
    Bump

    Comment


    • #3
      Martin:
      despite being simphatetic with your striving to get a positive reply, bumping is discouraged on this list (please, see the FAQ) You have already received replies at https://www.statalist.org/forums/for...r-probit-model, with the advice of taking the reverse causation issue up to your teacher/professor/supervisor.
      If you do not provide some update, I'm afraid your query has reached a standstill.
      Kind regards,
      Carlo
      (Stata 19.0)

      Comment


      • #4
        Hey Carlo,

        i have apologize for bumping. The Thread you are linking to is about the probit model and there for another issue.

        Here i am asking for ideas to imitigate the reverse causality problem in my fixed effect model with the binary variable AS the only regressor.

        Comment


        • #5
          Martin:
          please post what you typed and what Stata gave you back (setting the endogeneity issue aside for a while). Thanks.
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #6
            Dear Carlo,

            Below I have typed dataex:

            Code:
            * Example generated by -dataex-. To install: ssc install dataex
            clear
            input byte SeasonID str22 PlayerID str9 Year byte Sold double Performance int SoldID float clusterID
            1 "Luis Suárez"      "2011/2012" 0               7.35  . 54
            2 "Luis Suárez"      "2012/2013" 0   7.75048780487805  . 54
            3 "Luis Suárez"      "2013/2014" 1   8.36142857142857  1 54
            4 "Luis Suárez"      "2014/2015" 0               7.75  . 54
            5 "Luis Suárez"      "2015/2016" 0  7.944772727272727  . 54
            6 "Luis Suárez"      "2016/2017" 0  7.651395348837209  . 54
            1 "James Rodríguez"  "2011/2012" 0                  7  . 41
            2 "James Rodríguez"  "2012/2013" 1  7.169999999999999  2 41
            3 "James Rodríguez"  "2013/2014" 1  7.556470588235294  3 41
            4 "James Rodríguez"  "2014/2015" 0  7.667560975609755  . 41
            5 "James Rodríguez"  "2015/2016" 0  7.285500000000001  . 41
            6 "James Rodríguez"  "2016/2017" 0  7.161764705882352  . 41
            1 "Ángel Di María"  "2011/2012" 0  7.366666666666666  . 83
            2 "Ángel Di María"  "2012/2013" 0  6.978064516129032  . 83
            3 "Ángel Di María"  "2013/2014" 1  7.543170731707317  4 83
            4 "Ángel Di María"  "2014/2015" 1  7.207692307692308  5 83
            5 "Ángel Di María"  "2015/2016" 0  7.855142857142857  . 83
            6 "Ángel Di María"  "2016/2017" 0  7.319999999999999  . 83
            1 "David Luiz"        "2011/2012" 0  7.216551724137932  . 21
            2 "David Luiz"        "2012/2013" 0  7.166170212765956  . 21
            3 "David Luiz"        "2013/2014" 1  7.127241379310345  6 21
            4 "David Luiz"        "2014/2015" 0  7.187777777777778  . 21
            5 "David Luiz"        "2015/2016" 0 7.2043333333333335  . 21
            6 "David Luiz"        "2016/2017" 1 7.1416666666666675  7 21
            1 "Alexis Sánchez"   "2011/2012" 0               7.31  .  6
            2 "Alexis Sánchez"   "2012/2013" 0  6.953043478260869  .  6
            3 "Alexis Sánchez"   "2013/2014" 1  7.505833333333334  8  6
            4 "Alexis Sánchez"   "2014/2015" 0  7.746170212765957  .  6
            5 "Alexis Sánchez"   "2015/2016" 0  7.807999999999999  .  6
            6 "Alexis Sánchez"   "2016/2017" 1  7.756363636363637  9  6
            1 "Diego Costa"       "2011/2012" 0  7.179999999999999  . 23
            2 "Diego Costa"       "2012/2013" 0  6.943793103448276  . 23
            3 "Diego Costa"       "2013/2014" 1  7.385333333333334 10 23
            4 "Diego Costa"       "2014/2015" 0   7.31448275862069  . 23
            5 "Diego Costa"       "2015/2016" 0  7.147941176470589  . 23
            6 "Diego Costa"       "2016/2017" 1  7.410000000000001 11 23
            2 "Luke Shaw"         "2012/2013" 0               6.96  . 55
            3 "Luke Shaw"         "2013/2014" 1  7.157500000000001 12 55
            4 "Luke Shaw"         "2014/2015" 0               6.79  . 55
            5 "Luke Shaw"         "2015/2016" 0  7.218333333333334  . 55
            6 "Luke Shaw"         "2016/2017" 0 6.9338461538461535  . 55
            1 "Ander Herrera"     "2011/2012" 0               7.05  .  8
            2 "Ander Herrera"     "2012/2013" 0 7.1406451612903235  .  8
            3 "Ander Herrera"     "2013/2014" 1                7.4 13  8
            4 "Ander Herrera"     "2014/2015" 0  7.330000000000001  .  8
            5 "Ander Herrera"     "2015/2016" 0  6.772857142857141  .  8
            6 "Ander Herrera"     "2016/2017" 0 7.3325000000000005  .  8
            2 "Romelu Lukaku"     "2012/2013" 0               6.95  . 67
            3 "Romelu Lukaku"     "2013/2014" 1   7.26735294117647 14 67
            4 "Romelu Lukaku"     "2014/2015" 0  6.944102564102564  . 67
            5 "Romelu Lukaku"     "2015/2016" 0               7.16  . 67
            6 "Romelu Lukaku"     "2016/2017" 1                7.5 15 67
            1 "Cesc Fàbgregas"   "2011/2012" 0  7.383636363636364  . 16
            2 "Cesc Fàbgregas"   "2012/2013" 0  7.316315789473684  . 16
            3 "Cesc Fàbgregas"   "2013/2014" 1              7.198 16 16
            4 "Cesc Fàbgregas"   "2014/2015" 0  7.637560975609755  . 16
            5 "Cesc Fàbgregas"   "2015/2016" 0  7.145249999999999  . 16
            6 "Cesc Fàbgregas"   "2016/2017" 0  7.049999999999999  . 16
            2 "Adam Lallana"      "2012/2013" 0               6.96  .  1
            3 "Adam Lallana"      "2013/2014" 1  7.211578947368421 17  1
            4 "Adam Lallana"      "2014/2015" 0  6.877307692307692  .  1
            5 "Adam Lallana"      "2015/2016" 0  7.067058823529412  .  1
            6 "Adam Lallana"      "2016/2017" 0                7.1  .  1
            2 "Eliaquim Mangala"  "2012/2013" 0               6.81  . 26
            3 "Eliaquim Mangala"  "2013/2014" 1               7.03 18 26
            4 "Eliaquim Mangala"  "2014/2015" 0  7.056666666666667  . 26
            5 "Eliaquim Mangala"  "2015/2016" 0 6.8482142857142865  . 26
            6 "Eliaquim Mangala"  "2016/2017" 0               6.86  . 26
            1 "Antoine Griezmann" "2011/2012" 0               7.21  . 10
            2 "Antoine Griezmann" "2012/2013" 0               7.12  . 10
            3 "Antoine Griezmann" "2013/2014" 1             7.1255 19 10
            4 "Antoine Griezmann" "2014/2015" 0   7.11764705882353  . 10
            5 "Antoine Griezmann" "2015/2016" 0  7.551272727272727  . 10
            6 "Antoine Griezmann" "2016/2017" 0  7.364999999999999  . 10
            1 "Medhi Benatia"     "2011/2012" 0               7.36  . 62
            2 "Medhi Benatia"     "2012/2013" 1  7.409999999999999 20 62
            3 "Medhi Benatia"     "2013/2014" 1               7.59 21 62
            4 "Medhi Benatia"     "2014/2015" 0             7.1815  . 62
            5 "Medhi Benatia"     "2015/2016" 0  7.013076923076922  . 62
            6 "Medhi Benatia"     "2016/2017" 1            7.07625 22 62
            1 "Dejan Lovren"      "2011/2012" 0  7.039999999999999  . 22
            2 "Dejan Lovren"      "2012/2013" 1 6.8047826086956515 23 22
            3 "Dejan Lovren"      "2013/2014" 1  7.261764705882353 24 22
            4 "Dejan Lovren"      "2014/2015" 0  6.987037037037037  . 22
            5 "Dejan Lovren"      "2015/2016" 0           6.998125  . 22
            6 "Dejan Lovren"      "2016/2017" 0  7.130000000000001  . 22
            1 "Toni Kroos"        "2011/2012" 0  7.604750000000001  . 78
            2 "Toni Kroos"        "2012/2013" 0   7.60741935483871  . 78
            3 "Toni Kroos"        "2013/2014" 1  7.432142857142858 25 78
            4 "Toni Kroos"        "2014/2015" 0  7.396976744186047  . 78
            5 "Toni Kroos"        "2015/2016" 0   7.33767441860465  . 78
            6 "Toni Kroos"        "2016/2017" 0 7.5515384615384615  . 78
            2 "Lazar Markovic"    "2012/2013" 1  6.650000000000001 26 50
            3 "Lazar Markovic"    "2013/2014" 1  6.431428571428571 27 50
            4 "Lazar Markovic"    "2014/2015" 0  6.594615384615385  . 50
            5 "Lazar Markovic"    "2015/2016" 0  6.853333333333333  . 50
            6 "Lazar Markovic"    "2016/2017" 0            6.66625  . 50
            3 "Juan Iturbe"       "2013/2014" 1               7.31 28 46
            4 "Juan Iturbe"       "2014/2015" 0  6.674761904761904  . 46
            5 "Juan Iturbe"       "2015/2016" 0              6.362  . 46
            end

            And when I run the model I get the following.:
            Click image for larger version

Name:	Capture2.JPG
Views:	1
Size:	52.3 KB
ID:	1498003



            The goal is to see how Performance changes in the seasons where the players get sold.

            Comment

            Working...
            X