Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Doubts about interpretation of the estimated coefficients using a stochastic frontier model

    In my thesis, I´m estiming a stochastic frontier model (SFM). The first equation estimates the production frontier model and the second equation estimates the inefficiency distribution, which is used in the production frontier function. For that purpose I used the sfpanel command in STATA.

    However, the coefficients of the inefficiency distribution cannot really be interpreted in a easy way. Now, I'm trying to estimate the marginal effects of my model after running a two-equation regression.

    However, I still cannot find the way to calculate these marginal effects for the variables that explain the term inefficiency.

    Someone will have a suggestion

  • #2
    You'll increase your chances of a useful answer by following the FAQ on asking questions - provide Stata code in code delimiters, readable Stata output and sample data using dataex. We don't even know exactly what you ran.

    sfpanel postestimation has a bunch of things it will predict including inefficiency. I don't use frontier models so I'm not even sure what marginal effects means. In general, I find working with predicted values (often varying one variable and holding the other variables at their means) helps interpretation. For Stata procedures, the margins command does this, but with user written commands, there is no guaranteed they work with margins. With a user-written procedure, getting help depends on someone active on the list happening to use the procedure.

    Comment


    • #3
      Phil, thanks for your comment.

      I estimated a stochastic frontier model (SFM) for a sample of firms belonging to the same sector. The structure of my data is a panel of two periods. For the estimation I follow Battese & Coelli (1995).
      Battese & Coelli (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data.
      Empirical Economics 20: 325-332.
      In the SFM estimate, I used the logarithm of the production value (lpv) as the dependent variable, as independent variables I considered the logarithm of the number of blue collar employees (lbe) and the logarithm of the capital of the firm (lcf). In the estimation of inefficiency term (U) I considered a dummy variable which takes the value of one if the firm has a quality control department (qc) and zero in any other case; I also considered a variable that measures the percentage of trained personnel (per_tp) a year before.

      Code:
      . xi: sfpanel lpv lbe lcf, model(bc95) u( por_tp i.qc) robust
      i.qc              _Iqc_0-1            (naturally coded; _Iqc_0 omitted)
      
      
      initial:       Log pseudolikelihood = -5387.7015
      Iteration 0:   Log pseudolikelihood = -5387.7015  
      Iteration 1:   Log pseudolikelihood = -5379.6189  
      Iteration 2:   Log pseudolikelihood = -5358.7663  
      Iteration 3:   Log pseudolikelihood = -5355.3939  
      Iteration 4:   Log pseudolikelihood = -5349.3455  
      Iteration 5:   Log pseudolikelihood = -5345.5249  
      Iteration 6:   Log pseudolikelihood = -5343.6951  
      Iteration 7:   Log pseudolikelihood =  -5341.704  
      Iteration 8:   Log pseudolikelihood = -5338.9792  
      Iteration 9:   Log pseudolikelihood = -5338.6383  
      Iteration 10:  Log pseudolikelihood = -5338.4574  
      Iteration 11:  Log pseudolikelihood = -5338.4068  
      Iteration 12:  Log pseudolikelihood = -5338.3876  
      Iteration 13:  Log pseudolikelihood = -5338.3859  
      Iteration 14:  Log pseudolikelihood = -5338.3856  
      Iteration 15:  Log pseudolikelihood = -5338.3856  
      
      Inefficiency effects model (truncated-normal)        Number of obs =      3129
      Group variable: mun2                              Number of groups =      1796
      Time variable: year                             Obs per group: min =         1
                                                                     avg =       1.7
                                                                     max =         2
      
                                                           Prob > chi2   =    0.0000
      Log pseudolikelihood = -5338.3856                    Wald chi2(2)  =   2540.23
      
                                      (Std. Err. adjusted for 1796 clusters in mun2)
      ------------------------------------------------------------------------------
                   |               Robust
               lpv |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
      Frontier     |
               lbe |   .8672515   .0303076    28.61   0.000     .8078496    .9266534
               lcf |   .3172884   .0177705    17.85   0.000     .2824589    .3521179
             _cons |   13.29697   .0703137   189.11   0.000     13.15916    13.43478
      -------------+----------------------------------------------------------------
      Mu           |
             _cons |  -3.154241   .8404152    -3.75   0.000    -4.801425   -1.507057
      -------------+----------------------------------------------------------------
      Usigma       |
            por_tp |   3.185112   .3166099    10.06   0.000     2.564568    3.805656
            _Iqc_1 |   .8901654   .0973669     9.14   0.000     .6993298    1.081001
             _cons |   .0336813   .2881557     0.12   0.907    -.5310934    .5984561
      -------------+----------------------------------------------------------------
      Vsigma       |
             _cons |  -.1034471   .0852968    -1.21   0.225    -.2706258    .0637316
      -------------+----------------------------------------------------------------
        E(sigma_u) |    2.59848                                 2.557942    2.639019
           sigma_v |   .9495914   .0404986    23.45   0.000     .8734426    1.032379
      ------------------------------------------------------------------------------


      Of the results that I got. I have doubts in the interpretation of the coefficients obtained in the estimation of the term of inefficiency.

      Someone will have a suggestion.

      Comment


      • #4

        ------------------------------------------------------------------------------
        lnprofit | Coef. Std. Err. z P>|z| [95% Conf. Interval]
        -------------+----------------------------------------------------------------
        lnprofit |
        lnseed | .1747188 .0470893 3.71 0.000 .0824254 .2670123
        lnirri | .8454282 .1673978 5.05 0.000 .5173346 1.173522
        lnlab | .650646 .2488486 2.61 0.009 .1629118 1.13838
        lnfer | .2176773 .1079339 2.02 0.044 .0061307 .4292238
        lnche | -.0870072 .1172303 -0.74 0.458 -.3167743 .1427599
        lnNPI | -.9598595 .036801 -26.08 0.000 -1.031988 -.8877308
        oth | -.0269979 .1684612 -0.16 0.873 -.3571758 .3031799
        _cons | -4.085947 .6209705 -6.58 0.000 -5.303027 -2.868868
        -------------+----------------------------------------------------------------
        mu |
        rf | .8357975 .2739999 3.05 0.002 .2987675 1.372827
        sup | .4475144 .2900098 1.54 0.123 -.1208944 1.015923
        qual | -.0186924 .2169382 -0.09 0.931 -.4438835 .4064987
        hig_mo_wa | .4418592 .3458635 1.28 0.201 -.2360209 1.119739
        over | -.0177333 .2444538 -0.07 0.942 -.496854 .4613874
        deci | -.0282881 .2166438 -0.13 0.896 -.4529021 .3963258
        totare | .0002899 .004471 0.06 0.948 -.008473 .0090528
        farmcate | .4197956 .2117045 1.98 0.047 .0048624 .8347289
        soilquality | -.1422485 .2035687 -0.70 0.485 -.5412359 .2567389
        _cons | .2950845 .6834696 0.43 0.666 -1.044491 1.63466
        -------------+----------------------------------------------------------------
        /lnsigma2 | .0583253 .2293172 0.25 0.799 -.3911282 .5077787
        /lgtgamma | 1.313763 1.40526 0.93 0.350 -1.440497 4.068023
        -------------+----------------------------------------------------------------
        sigma2 | 1.06006 .2430899 .6762935 1.661596
        gamma | .7881421 .2346422 .1914683 .9831767
        sigma_u2 | .8354777 .3936817 .0638757 1.60708
        sigma_v2 | .224582 .2221664 -.2108561 .6600202
        ------------------------------------------------------------------------------

        . predict te_tn, te
        (30 missing values generated)

        . summarize te_tn

        Variable | Obs Mean Std. Dev. Min Max
        -------------+---------------------------------------------------------
        te_tn | 185 .2784945 .198747 .0135758 .8463281

        . predict marginal

        Comment


        • #5
          Greetings Rene,

          Recently im estimating using same method like you do. Would you like to share your paper/article?

          Thanks

          Comment

          Working...
          X