I am trying to estimate the impact of a program introduced in the US in 2007 on the yearly number of clinical trials. Some diseases are eligible for the program (eligible=1) and others are not (eligible=0). Most diseases became eligible for the program in 2007 but a few diseases became eligible later on. As a result, I have a staggered introduction of the program and my variable after=1 differs across diseases.
Here is a sample of my dataset:
In order to estimate the impact of the program, I am using a difference-in-differences approach. I have a panel data (trials for 40 diseases across 19 years), and I want to control for disease FE and year FE.
As my dependent variable is a count variable, I ran a poisson estimation:
I see that my variable eligible drops because it is collinear with the disease FE while the variable after does not drop as it is not collinear with the year FE (the variable after varies across diseases)
I then want to estimate the marginal effect for the interaction between after and eligible:
The marginal effects are identical for the eligible and non-eligible diseases in the before period. Is it because the variable eligible is collinear with the disease FE? Would that mean that I cannot run the marginal effects in this case? Or can I ignore the fact that they are equal and assume that the program effect is 7.98-9.94?
Thank you very much!
Here is a sample of my dataset:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float trials long diseases int year float(eligible after) 0 1 2000 0 0 0 1 2001 0 0 1 1 2002 0 0 0 1 2003 0 0 0 1 2004 0 0 11 1 2005 0 0 5 1 2006 0 0 8 1 2007 0 1 5 1 2008 0 1 8 1 2009 0 1 10 1 2010 0 1 7 1 2011 0 1 8 1 2012 0 1 7 1 2013 0 1 9 1 2014 0 1 5 1 2015 0 1 13 1 2016 0 1 12 1 2017 0 1 11 1 2018 0 1 0 2 2000 1 0 0 2 2001 1 0 0 2 2002 1 0 0 2 2003 1 0 0 2 2004 1 0 0 2 2005 1 0 1 2 2006 1 0 0 2 2007 1 1 0 2 2008 1 1 0 2 2009 1 1 0 2 2010 1 1 0 2 2011 1 1 1 2 2012 1 1 0 2 2013 1 1 1 2 2014 1 1 0 2 2015 1 1 0 2 2016 1 1 0 2 2017 1 1 0 2 2018 1 1 0 3 2000 1 0 0 3 2001 1 0 0 3 2002 1 0 0 3 2003 1 0 0 3 2004 1 0 1 3 2005 1 0 1 3 2006 1 0 0 3 2007 1 0 2 3 2008 1 0 0 3 2009 1 0 1 3 2010 1 0 2 3 2011 1 0 9 3 2012 1 0 0 3 2013 1 0 3 3 2014 1 0 5 3 2015 1 1 0 3 2016 1 1 2 3 2017 1 1 1 3 2018 1 1 0 4 2000 1 0 0 4 2001 1 0 0 4 2002 1 0 0 4 2003 1 0 0 4 2004 1 0 0 4 2005 1 0 1 4 2006 1 0 0 4 2007 1 1 0 4 2008 1 1 0 4 2009 1 1 1 4 2010 1 1 0 4 2011 1 1 1 4 2012 1 1 0 4 2013 1 1 4 4 2014 1 1 3 4 2015 1 1 3 4 2016 1 1 6 4 2017 1 1 5 4 2018 1 1 0 5 2000 1 0 0 5 2001 1 0 0 5 2002 1 0 0 5 2003 1 0 0 5 2004 1 0 5 5 2005 1 0 1 5 2006 1 0 2 5 2007 1 1 6 5 2008 1 1 1 5 2009 1 1 4 5 2010 1 1 0 5 2011 1 1 3 5 2012 1 1 3 5 2013 1 1 4 5 2014 1 1 2 5 2015 1 1 2 5 2016 1 1 3 5 2017 1 1 5 5 2018 1 1 0 6 2000 1 0 0 6 2001 1 0 0 6 2002 1 0 0 6 2003 1 0 0 6 2004 1 0 end label values diseases diseases label def diseases 1 "Ischemic heart disease", modify label def diseases 2 "buruli", modify label def diseases 3 "chagas", modify label def diseases 4 "chikungunya", modify label def diseases 5 "cholera", modify label def diseases 6 "congo fever", modify
Code:
xtset diseases year
Code:
xtpoisson trials i.after##i.eligible user_fee PRV_value_lag_1 i.year, fe vce(robust) note: 1 group (19 obs) dropped because of all zero outcomes Iteration 0: log pseudolikelihood = -3482.899 Iteration 1: log pseudolikelihood = -1438.5172 Iteration 2: log pseudolikelihood = -1326.6942 Iteration 3: log pseudolikelihood = -1323.9955 Iteration 4: log pseudolikelihood = -1323.9843 Iteration 5: log pseudolikelihood = -1323.9843 Conditional fixed-effects Poisson regression Number of obs = 760 Group variable: diseases Number of groups = 40 Obs per group: min = 19 avg = 19.0 max = 19 Wald chi2(21) = 541403.70 Log pseudolikelihood = -1323.9843 Prob > chi2 = 0.0000 (Std. Err. adjusted for clustering on diseases) --------------------------------------------------------------------------------- | Robust trials | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- 1.after | .7540807 .617699 1.22 0.222 -.4565871 1.964748 1.eligible | 0 (omitted) | after#eligible | 1 1 | -.2196316 .1756016 -1.25 0.211 -.5638045 .1245412 | user_fee | 1.03e-08 2.06e-08 0.50 0.618 -3.02e-08 5.07e-08 PRV_value_lag_1 | 5.30e-10 6.08e-10 0.87 0.383 -6.61e-10 1.72e-09 | year | 2001 | -.2732933 .2078431 -1.31 0.189 -.6806583 .1340717 2002 | .4410561 .1786783 2.47 0.014 .0908531 .791259 2003 | .4480247 .1444247 3.10 0.002 .1649575 .7310919 2004 | .5901992 .1549172 3.81 0.000 .286567 .8938314 2005 | 2.292754 .3627732 6.32 0.000 1.581732 3.003777 2006 | 2.255858 .3615834 6.24 0.000 1.547167 2.964549 2007 | 1.4224 .6965394 2.04 0.041 .0572083 2.787593 2008 | 1.504672 .6946449 2.17 0.030 .1431928 2.866151 2009 | 1.423661 .6912332 2.06 0.039 .0688686 2.778453 2010 | 1.338251 .7091325 1.89 0.059 -.0516231 2.728125 2011 | 1.362411 .7026438 1.94 0.053 -.0147454 2.739568 2012 | 1.420266 .7100725 2.00 0.045 .0285491 2.811982 2013 | 1.45651 .6847051 2.13 0.033 .114513 2.798508 2014 | 1.551972 .6872168 2.26 0.024 .2050519 2.898892 2015 | 1.657939 .6661534 2.49 0.013 .3523026 2.963576 2016 | 1.656704 .6659423 2.49 0.013 .3514812 2.961927 2017 | 1.644959 .6718924 2.45 0.014 .3280741 2.961844 2018 | 1.532055 .6453066 2.37 0.018 .2672774 2.796833 ---------------------------------------------------------------------------------
I then want to estimate the marginal effect for the interaction between after and eligible:
Code:
. margins after#eligible, predict(nu0) Predictive margins Number of obs = 760 Model VCE : Robust Expression : Predicted number of events (assuming u_i=0), predict(nu0) -------------------------------------------------------------------------------- | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- after#eligible | 0 0 | 4.678461 2.342815 2.00 0.046 .0866278 9.270295 0 1 | 4.678461 2.342815 2.00 0.046 .0866278 9.270295 1 0 | 9.944802 4.023562 2.47 0.013 2.058765 17.83084 1 1 | 7.983831 2.830039 2.82 0.005 2.437056 13.53061 --------------------------------------------------------------------------------
Thank you very much!
Comment